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languages...

Different origins... Different degrees of risk...

More or less valuable data...

Historically, program = unit of trust

This historical approach is 
increasingly problematic

Modern programs are 
deeply heterogeneous

(1)

(1) 10th Annual State of the Software Supply Chain, Sonatype Inc.

The average application has around 
180 open-source components — 
that’s an increase from around 150 
from which we found last year.

Process
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(1)

(1) https://www.theregister.com/2024/07/23/crowdstrike_failure_shows_need_for/

Illustration of this problem:
Last year's Crowdstrike disaster where a bug in an 
external antivirus plug-in crashes millions of computers
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"Just a crash": what if it had 
been a supply-chain attack?

(1)

(1) https://www.theregister.com/2024/07/23/crowdstrike_failure_shows_need_for/

Illustration of this problem:
Last year's Crowdstrike disaster where a bug in an 
external antivirus plug-in crashes millions of computers
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Illustration of this problem:
Last year's Crowdstrike disaster where a bug in an 
external antivirus plug-in crashes millions of computers

"Just a crash": what if it had 
been a supply-chain attack?

(1) https://www.theregister.com/2024/07/23/crowdstrike_failure_shows_need_for/
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• such that if one of the components is breached, the attacker does 
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• design programs split into distrusting and isolated components
• such that if one of the components is breached, the attacker does 

not compromise the whole program
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Software compartmentalization =
• design programs split into distrusting and isolated components
• such that if one of the components is breached, the attacker does 

not compromise the whole program

Significant research funding 
in recent years

£70M

$50M

£12M
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We know from this experience that compartmentalization works

• OpenSSH is vulnerable to a bug 
with remote-code execution

• It is exploitable: attackers can break 
allocator-based mitigations

• Compartmentalization ultimately 
mitigates the exploit by containing 
it in an unprivileged process

(1)

(1) https://seclists.org/oss-sec/2023/q1/92
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Yet, in 2025, compartmentalization is not a widespread practice

Beyond the popular software I mentioned 
earlier, compartmentalization is rather rare

"Less than 56 apps out of the 1,520 most popular 
Debian applications are compartmentalized"

(1) Lefeuvre et al., SoK: Software Compartmentalization, S&P 2025

(1)
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(1) Lefeuvre et al., SoK: Software Compartmentalization, S&P 2025

(1)



Here is how we approached the question:

• Started by making a fundamental observation: experts do 
not even agree on what compartmentalization is
• Define a fundamental model and consistent terminology for 

compartmentalization

• Propose a taxonomy for evaluating compartmentalization 
approaches and apply it systematically to a wide set (200+) 
of research and mainstream efforts

• From this: extract a set of core challenges
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Software compartmentalization is...
• a software engineering practice where developers break down a 

program into groups of isolated/distrusting compartments, each 
controlling only the resources they precisely require

• an embodiment of the principle of least-privilege

Fundamental idea:
• if a component is compromised, attackers are restricted to the 

permissions of the compromised component
• to escalate privileges and compromise the rest of the system, attackers 

must find and exploit additional software vulnerabilities
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Going back to our previous example...
Isolation Boundary

Web Server

HTTP
Parser

SSL Keys

FastCGI
Module

...

Compartmentalized

Compartmentalizing adds a (potentially 
very tricky) step on the attacker's path 
towards taking over the program

Components now distrust each other

Protection Domain

Isolation prevents leak
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Microkernels

Web Browsers Server Software

But also: hypervisors, firmware, etc.

Software compartmentalization is applicable to any kind of program
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Still, software compartmentalization as we refer to here applies within 
one program, not across programs

Web Server

HTTP
Parser

SSL Keys

FastCGI
Module

...

Isolation Boundary

Operating System

...

More general isolation: share challenges and solutions 
with software compartmentalization as we define it

Across programs
Not SW Compartmentalization

(1) Shu et al.,  A Study of Security Isolation Techniques, CSUR 2016

(1)
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Software compartmentalization can target different trust models

Sandbox

...

...

...

Isolation Boundary

Safebox

...

...

...

Mutual
Distrust

Mutual 
Distrust

Mutual
Distrust

...

Sandbox: component isolated to 
protect the rest of the system

All but the sandbox is trusted

Safebox: component isolated to 
protect it from others

Only the safebox is trusted

Mutual distrust: components 
distrust each other

(1) (2) (3)

(1) https://fr.wikipedia.org/wiki/Panoptique#/media/Fichier:Kilmainham_1.JPG (2) https://en.wikipedia.org/wiki/Bank_vault#/media/File:WinonaSavingsBankVault.JPG (3) https://en.wikipedia.org/wiki/File:Panmunjeom_DMZ.png

These trust models are 
distinct and result in different 

software architectures
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Software compartmentalization can target different properties

Distrusted ...

Write

Isolation Boundary

Distrusted ...

Read

Distrusted ...

DoS

Integrity: compartment cannot 
alter other compartment's data

Confidentiality: compartment 
cannot read other 
compartment's data

Availability: compartment 
cannot prevent other 
compartments from operating

Necessary: no confidentiality or 
availability without integrity



My promise for this talk

1. What is software compartmentalization? (slightly more formal)
2. A systematic perspective on compartmentalization
3. The why: compartmentalization everywhere, what will it take?

A journey through twenty years of 
compartmentalization

Take a step back: How do practitioners compartmentalize? 
What does research say? What are open challenges?
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policies in software / programming models / idioms?
o Done with a compartmentalization abstraction

3. How to enforce policies at runtime?
o Done with a compartmentalization mechanism
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Developers must define which components are to be separated and 
which properties should be enforced on the resulting compartments
• The result is a compartmentalization policy

To design policies, developers employ a 
Policy Definition Method

Problem #1
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Historically, people have done this manually.

Example: we want to split this C program.

HTTP 
Parser

(Fictive monolithic program)

FastCGI 
Module

SSL 
Library

...

Network-exposed

had CVEscomplex

"I do not trust this 
component"

A developer looks attentively at the program...
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Historically, people have done this manually.

Example: we want to split this C program.

HTTP 
Parser
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Historically, people have done this manually.

Example: we want to split this C program.

HTTP 
Parser

(Fictive monolithic program)

FastCGI 
Module

SSL 
Library

...

SSL 
Library

HTTP 
Parser

HTTP 
Parser

sandbox

"I particularly value 
this component"

Holds session keys

Formally-verified

"I do not trust this 
component"

A developer looks attentively at the program...
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Historically, people have done this manually.

Example: we want to split this C program.

HTTP 
Parser

(Fictive monolithic program)

FastCGI 
Module

SSL 
Library

...

HTTP 
Parser

SSL 
Library

"I do not trust this 
component"

"I particularly value 
this component"

This is still the most common way to do it today.

safebox

sandbox

SSL 
Library

HTTP 
Parser

A developer looks attentively at the program...



(1) Lefeuvre et al., SoK: Software 
Compartmentalization, S&P 2025

Policy Definition Methods are a very active research 
area, with goals such as...

We systematized these works in our SoK

Maximize security of interfaces
Maximize soundness

Minimize developer effort
Maximize performance

Minimize over-privilege
(1)

Systematizing Policy Definition Methods
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Policy Definition Methods are a very active research 
area, with goals such as...

We systematized these works in our SoK

Maximize security of interfaces
Maximize soundness

Minimize developer effort
Maximize performance

Minimize over-privilege

(1) Lefeuvre et al., SoK: Software 
Compartmentalization, S&P 2025

(1)

Systematizing Policy Definition Methods
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Policy definition methods table from the paper
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Characteristics we included in the taxonomy
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Names of the policy definition methods we consider

Characteristics we included in the taxonomy

This talk: present a few interesting aspects, many more in the paper
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Entirely 
manual

Fully 
automated They achieve automation 

leveraging different kinds of 
inputs from developers.
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Automation is a key research topic in PDMs

Entirely 
manual

Fully 
automated They employ different kinds 

of analysis techniques (static, 
dynamic, hybrid)
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Automation is a key research topic in PDMs

Entirely 
manual

Fully 
automated

Specializing on a particular 
programming language is often 
necessary to simplify the problem
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(1) Liu et al., PtrSplit: Supporting General Pointers in Automatic Program Partitioning, CCS 2017

(1)
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Annotate valuable data, 
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cuts the program to 
safebox them
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The program is then 
split at arbitrary 

function boundaries

Pick one influential example from the literature: PtrSplit
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(1)
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Semi-automated tool 
for safeboxing code

The program is then 
split at arbitrary 

function boundaries

The split is done statically by 
the tool, i.e., just by looking at 
the code (vs. a dynamic tool 
that would run the program)

Pick one influential example from the literature: PtrSplit

(1) Liu et al., PtrSplit: Supporting General Pointers in Automatic Program Partitioning, CCS 2017

(1)

Annotate valuable data, 
PtrSplit then automatically 
cuts the program to 
safebox them
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Automated Policy Definition Methods trade off 
security and/or performance for developer effort.

Open Problem in Policy Definition Methods

Automated methods struggle to do that since the 
semantics of programs fundamentally cannot be 
captured automatically.

Which trade-offs are desirable in practice?

HTTP 
Parser

(Fictive monolithic program)

FastCGI 
Module

SSL 
Library

...

Network

Take our example: our split cuts a hot path. We can 
spend more developer time to look attentively and 
refine our cut to avoid the critical code paths.
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Automated Policy Definition Methods trade off 
security and/or performance for developer effort.

Open Problem in Policy Definition Methods

Automated methods struggle to do that since the 
semantics of programs fundamentally cannot be 
captured automatically.

Which trade-offs are desirable in practice?

HTTP 
Parser

(Fictive monolithic program)

FastCGI 
Module

SSL 
Library

...
Take our example: our split cuts a hot path. We can 
spend more developer time to look attentively and 
refine our cut to avoid the critical code paths.

Network

Cuts a hot path
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Automated Policy Definition Methods trade off 
security and/or performance for developer effort.

Open Problem in Policy Definition Methods

Automated methods struggle to do that since the 
semantics of programs fundamentally cannot be 
captured automatically.

Which trade-offs are desirable in practice?

HTTP 
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(Fictive monolithic program)

FastCGI 
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SSL 
Library

...

Network

Rice's theorem: "non-trivial semantic 
properties of programs are undecidable".
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1. How to determine the right policy to enforce?
o Done with a policy definition method

2. How to integrate the notion of compartmentalization 
policies in software / programming models / idioms?
o Done with a compartmentalization abstraction

3. How to enforce policies at runtime?
o Done with a compartmentalization mechanism

Propose to view compartmentalization as 3 problems:
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Having defined a policy, we need to express it in the program. 
Developers perform this using programming abstractions.

Problem #2
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Parser
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Problem #2

Historically, people have done this with processes (=the process abstraction).

fork()

setuid() seccomp()

chroot()Setup IPC...

This is still the most common way to do it today.
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Developers perform this using programming abstractions.

Example: assume we sandbox the HTTP parser.
HTTP 
Parser

(Fictive monolithic program)

FastCGI 
Module

SSL 
Library

...
HTTP 
Parser

HTTP 
Parser

fork()

setuid() seccomp()

chroot()Setup IPC...

Historically, people have done this with processes (=the process abstraction).

This is still the most common way to do it today.

Problem #2



Programming abstractions for compartmentalization are also a 
very active research area:

(1) Lefeuvre et al., SoK: Software 
Compartmentalization, S&P 2025

(1)

Compartmentalization Abstractions

Maximize security properties that can be achieved

Making the most of a specific 
enforcement mechanism

Minimize developer effort (intuitive, easy to use)

Leverage domain-specific knowledge (threat model, deployment)

Support generic mechanisms
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Names of the abstractions we consider Characteristics we included in the taxonomy
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This talk: present a few interesting aspects, full discussion in the paper
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Abstractions often specialize on a particular threat model

For safeboxing 
(crypto keys, 
privileged code)

For sandboxing 
(libraries, drivers)
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A lot of interest in abstractions for kernel compartmentalization

Compartmentalize 
userland and kernel 

together

Kernel only...

Or hypervisors
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A lot of interest in rethinking communication and sharing between domains

Leverage shared memory to 
speed up sharing between 
domains (vs. message passing)

Exposing communication 
between domains as function 
calls (vs. IPCs) to be more intuitive
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Interest in abstractions that compose with different isolation mechanisms

For example: new abstractions that 
leverage the specifics of safe 
languages for isolation
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Pick one influential example from the literature:  RLBox

(1) Narayan et al., Retrofitting Fine Grain Isolation in the Firefox Renderer, USENIX Security 2020

(1)
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Pick one influential example from the literature:  RLBox

(1) Narayan et al., Retrofitting Fine Grain Isolation in the Firefox Renderer, USENIX Security 2020

(1)

Implements cross-compartment 
communication with function 

calls, which is intuitive

Builds on shared memory to speed 
up cross-compartment data sharing

Abstraction specialized 
for sandboxing untrusted 

code (such as libraries)

Enforces confidentiality and integrity

Does not depend on a specific 
enforcement mechanism
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Open Problem in Compartmentalization 
Abstractions

HTTP 
Parser

FastCGI 
Module

SSL 
Library

...

Hardening compartment interfaces is key to obtaining 
strong security properties with compartmentalization

Example: assume the developer implemented our 
boundaries. Compartments still need to 
communicate, which opens an attack surface.
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Open Problem in Compartmentalization 
Abstractions

HTTP 
Parser

FastCGI 
Module

SSL 
Library

...

fastcgi_do(arguments)

Hardening compartment interfaces is key to obtaining 
strong security properties with compartmentalization

Example: assume the developer implemented our 
boundaries. Compartments still need to 
communicate, which opens an attack surface.
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boundaries. Compartments still need to 
communicate, which opens an attack surface.
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We stress that abstractions can and should 
facilitate the hardening of compartment interfaces.
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implementation of secure domain interfaces?
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Open Problem in Compartmentalization 
Abstractions

Most abstractions consider the hardening of 
compartment interfaces an orthogonal problem.

More work  needed in that direction.

(1) Narayan et al., Retrofitting Fine Grain Isolation in the Firefox Renderer, USENIX Security 2020

(1)

(2) Amar et al., CHERIoT RTOS: An OS for Fine-Grained Memory-Safe Compartments on Low-Cost Embedded Devices, SOSP 2025

Leveraging C++ types to 
ensure all interface-

crossing data is checked

Do as many of these checks 
as possible automatically

(2)

Using capabilities to exchange 
data temporarily and with 

reduced permissions

Opaque data types eliminate the 
need for checks on exported-and-
reimported objects

Some do!
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1. How to determine the right policy to enforce?
o Done with a policy definition method

2. How to integrate the notion of compartmentalization 
policies in software / programming models / idioms?
o Done with a compartmentalization abstraction

3. How to enforce policies at runtime?
o Done with a compartmentalization mechanism

Propose to view compartmentalization as 3 problems:
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FastCGI 
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SSL 
Library
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Address space (page table) 1

Address space (page table) 2

Problem #3

Finally, we must enforce the policy at runtime.
This is achieved with an enforcement mechanism.

Page tables (via the MMU) are the historical enforcement mechanism.
Example from earlier: assume we implemented the sandbox with processes.
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HTTP 
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(Fictive monolithic program)

FastCGI 
Module

SSL 
Library

...

Address space (page table) 1

Address space (page table) 2

The memory management 
unit enforces isolation

Problem #3

Finally, we must enforce the policy at runtime.
This is achieved with an enforcement mechanism.

Page tables (via the MMU) are the historical enforcement mechanism.
Example from earlier: assume we implemented the sandbox with processes.
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Finally, we must enforce the policy at runtime.
This is achieved with an enforcement mechanism.

HTTP 
Parser

(Fictive monolithic program)

FastCGI 
Module

SSL 
Library

...

Address space (page table) 1

Address space (page table) 2

The memory management 
unit enforces isolation

Page tables (via the MMU) are the historical enforcement mechanism.
Example from earlier: assume we implemented the sandbox with processes.

This is still the most common way to do it today.

Problem #3
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Enforcement mechanisms (for compartmentalization) 
are also a hot area:

Enforcement Mechanisms

Enable for stronger security properties

Maximize performance

Minimize hardware cost and complexity

(1) Lefeuvre et al., SoK: Software 
Compartmentalization, S&P 2025

(1)
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Enforcement Mechanisms

(1) Lefeuvre et al., SoK: Software 
Compartmentalization, S&P 2025

(1)

Enforcement mechanisms (for compartmentalization) 
are also a hot area:

Enable for stronger security properties

Maximize performance

Minimize hardware cost and complexity
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Again, a few interesting aspects
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WebAssembly

CHERI

Intel 
MPK

Hardware and software are both popular research areas
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A lot of interest in enforcing memory isolation at a byte granularity (vs. a page)

Very widely varying – 128 bits!
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Nearly all works aim at cutting the cost of domain switches
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Pick one influential example from the literature: CHERI

(1)  Watson et al., CHERI: A Hybrid Capability-System Architecture for Scalable Software Compartmentalization, S&P 2015

(1)(2)

(2) Amar et al., CHERIoT RTOS: An OS for Fine-Grained Memory-Safe Compartments on Low-Cost Embedded Devices, SOSP 2025
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Pick one influential example from the literature: CHERI

(1)  Watson et al., CHERI: A Hybrid Capability-System Architecture for Scalable Software Compartmentalization, S&P 2015

(1)(2)

Hardware mechanism that 
comes as an ISA extension

It can be used to enforce 
isolation at a byte granularity, 
as opposed to entire pages

It comes with a very low 
domain-switching overhead.

CHERI extends pointers with 
bounds and permission 

information. It is very expressive!

(2) Amar et al., CHERIoT RTOS: An OS for Fine-Grained Memory-Safe Compartments on Low-Cost Embedded Devices, SOSP 2025
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Open Problem in Enforcement Mechanisms
Mechanisms must fulfill several properties to be suitable to enforce 
compartmentalization (we formalize them in the SoK)

How to fairly evaluate the security and performance 
characteristics of isolation mechanisms?

Some (popular!) mechanisms do not fulfill all these properties
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Open Problem in Enforcement Mechanisms
Mechanisms must fulfill several properties to be suitable to enforce 
compartmentalization (we formalize them in the SoK)

How to fairly evaluate the security and performance 
characteristics of isolation mechanisms?

Intel 
MPK

Access permissions are stored 
in an unprotected register

Instructions that can modify this 
register must be protected, but this 
comes at a cost and is often neglected

Skews performance and 
security comparisons

Some (popular!) mechanisms do not fulfill all these properties



My promise for this talk

1. What is software compartmentalization? (slightly more formal)
2. A systematic perspective on compartmentalization
3. The why: compartmentalization everywhere, what will it take?

A journey through twenty years of 
compartmentalization

What are the remaining obstacles? Where to go from there?
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"Out of the 13 groups of compartmentalized 
applications we constituted, 8 are exclusively 

authored by academics or security professionals"

(1)
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part of common "software design patterns"
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We barely teach it at the university, not 
part of common "software design patterns"

(1) Lefeuvre et al., SoK: Software Compartmentalization, S&P 2025

(1)

Yes, but...

"Out of the 13 groups of compartmentalized 
applications we constituted, 8 are exclusively 

authored by academics or security professionals"

Potential obstacle #1: Lack of awareness?
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Potential obstacle #2: Performance?
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HTTP 
Parser

FastCGI 
Module

fastcgi_do()

Critical stance: in most cases, this is not a problem.
• The community is overly focused on performance
• The cost is reasonable in most cases if the 

compartmentalization is done correctly
• In fact, many performance-sensitive programs are 

compartmentalized!

Compartmentalization has an impact on performance
• Crossing protection domains or IPC is not free (among others)
• This cost varies based on where crossings are in the control flow
This makes compartmentalization more complex and limits the 
extent to which one can compartmentalize

Potential obstacle #2: Performance?

Remember our policy 
definition challenge...
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HTTP 
Parser

FastCGI 
Module

fastcgi_do()

Remember our policy 
definition challenge...

Critical stance: in most cases, this is not a problem.
• The community is overly focused on performance
• The cost is reasonable in most cases if the 

compartmentalization is done correctly
• In fact, many performance-sensitive programs are 

compartmentalized!

Compartmentalization has an impact on performance
• Crossing protection domains or IPC is not free (among others)
• This cost varies based on where crossings are in the control flow
This makes compartmentalization more complex and limits the 
extent to which one can compartmentalize

Yes, but...
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The historical approach to compartmentalizing software is too complex.

Implementing them with 
low-level process APIs

Going back to our example:
Securing them with 

ad-hoc audits
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Implementing them with 
low-level process APIs

Going back to our example:

Determining boundaries



Potential obstacle #3: Complexity!

188

Determining boundaries
Implementing them with 

low-level process APIs
Securing them with 

ad-hoc audits

This approach is ad-hoc, costly in developer time, 
and requires a lot of expertise.

The historical approach to compartmentalizing software is too complex.

Going back to our example:
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Implementing them with 
low-level process APIs

Securing them with 
ad-hoc audits

This approach is ad-hoc, costly in developer time, 
and requires a lot of expertise.

The historical approach to compartmentalizing software is too complex.

Going back to our example:

Determining boundaries



Consider debugging:
• There will be bugs to fix.
• Bugs now occur across security boundaries.
• This impacts the debugging experience but 

the debugging ecosystem is not there.

Potential obstacle #3: Complexity!
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The historical approach to compartmentalizing software is too complex.

Worse yet, it considers compartmentalization 
as a one-off operation, which it isn't.
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Consider maintenance!
• Developers will need to maintain the 

partitioned program.
• Over time, the partitioning strategy may 

need to change.
• Again, there is historically no tooling to 

handle that safely and avoid regressions.

Potential obstacle #3: Complexity!
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The historical approach to compartmentalizing software is too complex.

Worse yet, it considers compartmentalization 
as a one-off operation, which it isn't.
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Potential obstacle #4: The lack of a 
systematic approach?



(1) https://www.cs.dartmouth.edu/~doug/components.txt
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The historical approach to compartmentalization does not scale:
• Historically, compartmentalization is deeply custom to each program
• Compartmentalize program A, then start all over again with B

Can we make compartmentalization efforts reusable?
• Can we compartmentalize component C, and reuse that 

component compartmentalized everywhere?
• Analogy to the "software crisis" from the 1960s:

o The answer to "we are not producing enough software" is to 
build software from reusable components(1)
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systematic approach?



A golden age



It is the right time to push 
compartmentalization everywhere (1)

*emphasis mine

The level of cyber threat keeps on increasing (…). 
Today, ANSSI assesses that attackers linked to 
China, Russia and cybercrime pose the greatest 
threat to the most critical networks and to the 
French ecosystem in a systemic way.

(1) https://www.cert.ssi.gouv.fr/uploads/CERTFR-2024-CTI-002.pdf 202

• More than ever we need more secure software
• Compartmentalization absolutely fits the needs



• More than ever we need more secure software
• Compartmentalization absolutely fits the needs

(1)

(2)

(1) https://www.cert.ssi.gouv.fr/uploads/CERTFR-2024-CTI-002.pdf

It is the right time to push 
compartmentalization everywhere

(2) https://www.cisa.gov/sites/default/files/2023-10/SecureByDesign_1025_508c.pdf

*emphasis mine

The level of cyber threat keeps on increasing (…). 
Today, ANSSI assesses that attackers linked to 
China, Russia and cybercrime pose the greatest 
threat to the most critical networks and to the 
French ecosystem in a systemic way.

Secure Hardware Foundation: Incorporate 
architectural features that enable fine- 
grained memory protection, such as those 
described by Capability Hardware Enhanced 
RISC Instructions (CHERI) 
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Co-signed by, among 
others, UK, NL, DE, NO
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It is the right time to push 
compartmentalization everywhere

(1) Lefeuvre et al., SoK: Software Compartmentalization, S&P 2025 204

• The challenges to push compartmentalization at 
scale are not new:
o Research has explored them in many ways 

and come up with solutions that work 
(second part of this talk!)

o These advances are just asking to be 
developed and mainstreamed
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Take RLBox, discussed earlier in the talk
• Productized in Firefox for library isolation
• You can use it: https://github.com/PLSysSec/rlbox

(1)

The missing frameworks are emerging

207

Recently: increasing interest in coming together to 
create industry standards for compartmentalization
• The Open Robust Compartmentalization Alliance 

was just accepted as Linux Foundation 
project: https://github.com/ORCA-LF/governance

• Aiming to foster the adoption and standardization 
of compartmentalization practices

(1) Narayan et al., Retrofitting Fine Grain Isolation 
in the Firefox Render, USENIX Security 2020

https://github.com/PLSysSec/rlbox
https://github.com/ORCA-LF/governance
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in the Firefox Render, USENIX Security 2020
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The missing frameworks are emerging
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Recently: increasing interest in coming together to 
create industry standards for compartmentalization
• The Open Robust Compartmentalization Alliance 

was just accepted as Linux Foundation 
project: https://github.com/ORCA-LF/governance

• Aiming to foster the adoption and standardization 
of compartmentalization practices

Take RLBox, discussed earlier in the talk
• Productized in Firefox for library isolation
• You can use it: https://github.com/PLSysSec/rlbox

Join us! Still in early stage, you 
can send me a message.

https://github.com/ORCA-LF/governance
https://github.com/ORCA-LF/governance
https://github.com/ORCA-LF/governance
https://github.com/PLSysSec/rlbox


Take CHERI, discussed earlier as well.

The hardware ecosystem is emerging
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ARM Morello Prototype 
Board (2020)

Codasip X730 (2024)

It is not a research prototype. You can use it!

ICENI Family (CHERIoT): CHERI for 
the embedded world (2025)

Recently: creation of the CHERI Alliance to support 
industry standards and foster adoption
• Join the CHERI Alliance! https://cheri-alliance.org/

https://cheri-alliance.org/
https://cheri-alliance.org/
https://cheri-alliance.org/
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the embedded world (2025)

Take CHERI, discussed earlier as well.
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Software compartmentalization 
everywhere: what will it take?



Yes, there are many interesting research challenges left.

But for the better part, it is about transitioning two decades of 
research into the industry and open-source communities

1. An effort on industry-grade compartmentalization frameworks 
to lower the bar to compartmentalize software

2. An effort on using these frameworks to compartmentalize 
vulnerable components in a re-usable fashion: can we do this 
under the umbrella of Linux distributions?

3. Supporting the push towards emerging security-oriented 
hardware: integrate CHERI in your hardware products!
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Key Takeaways

1. Compartmentalization is a key practice to improve the 
trustworthiness of software

2. Compartmentalization, in its historical form, is hindered by its 
complexity

3. We live at a golden age to solve this problem. A call to the 
community: we can make software more trustworthy!
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Key Takeaways

1. Compartmentalization is a key practice to improve the 
trustworthiness of software

2. Compartmentalization, in its historical form, is hindered by its 
complexity

3. We live at a golden age to solve this problem. A call to the 
community: we can make software more trustworthy!

Reach out: hugo.lefeuvre@ubc.ca

Sponsors:
Collaborators:

Questions?

mailto:hugo.lefeuvre@ubc.ca
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