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Historically, program = unit of trust Modern programs are

deeply heterogeneous
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More or less valuable data...

libcrypto Rust module languages...
p— . Different origins... Different degrees of risk...
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Component ;  component |
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Operating System Kernel

| 180 open-source components —
DE that’s an increase from around 150
from which we found last year.

This historical approach is
increasingly problematic

<
(1) 10th Annual State of the Software Supply Chain, Sonatype Inc. EIsonatyl
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cso How did a CrowdStrike file crash millions of
Windows computers? We take a closer look at
the code

nsa Maybe next time some staged rollouts? A bit of QA too?

$ X f in @ ANALYSIS Last week, at 0409 UTC on July 19, 2024, antivirus maker CrowdStrike
released an update to its widely used Falcon platform that caused Microsoft Windows
machines around the world to crash.

The impact was extensive. Supply chain firm Interos estimates 674,620 direct enterprise
customer relationships of CrowdStrike and Microsoft were affected. Microsoft said 8.5
million Windows machines failed. The results beyond a massive amount of IT
remediation time included global flight and shipping delays due to widespread Windows
system failures.

lllustration of this problem:
Last year's Crowdstrike disaster where a bug in an
external antivirus plug-in crashes millions of computers

(1) https://www.theregister.com/2024/07/23/crowdstrike_failure_shows_need_for/
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nsa Maybe next time some staged rollouts? A bit of QA too?

$ X f in @ ANALYSIS Last week, at 0409 UTC on July 19, 2024, antivirus maker CrowdStrike
released an update to its widely used Falcon platform that caused Microsoft Windows
machines around the world to crash.

The impact was extensive. Supply chain firm Interos estimates 674,620 direct enterprise
customer relationships of CrowdStrike and Microsoft were affected. Microsoft said 8.5

million Windows machines failed. The results beyond a massive amount of IT
remediation time included global flight and shipping delays due to widespread Windows

et e (”Just a crash": what if it had

wsu/pply-chain attack?
lllustration of this problem:

Last year's Crowdstrike disaster where a bug in an
external antivirus plug-in crashes millions of computers

rogram = single unit of trust

(1) https://www.theregister.com/2024/07/23/crowdstrike_failure_shows_need_for/
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Software compartmentalization =

* design programs split into distrusting and isolated components
e such that if one of the components is breached, the attacker does
not compromise the whole program
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Compartmentalization

Software compartmentalization =

* design programs split into distrusting and isolated components
e such that if one of the components is breached, the attacker does
not compromise the whole program

Compartmentalization is applied to high-profile software

Server Software Web Browsers But also...
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Compa_d'_m.gn_'l'gh?ghnn £70M

—~ Significant research funding

Area of investment and support
Digital security by design In recent years

The digital security by design (DSbD) challenge funds business and researchers to
update the foundation of the insecure digital computing infrastructure by creating a
new, more secure hardware and software ecosystem.

Budget: £70 million

Duration: From 2020 to 2025

Partners involved: Innovate UK, Engineering and Physical Sc INDUSTRY EMERGING INNOVATION INDUSTRY NEWS $50 M

£12M (EPSRC)
DARPA to Hold Compartmentalization

Contracts for innovation: DSbD Advancing | and priV"ege Management (CPM)
CHERI Tools and software
Proposers Day

Opportunity status: Closed

Funders: Innovate UK Full solutions are anticipated to require new hardware support, though software-only
Co-funders: Department for Science, Innovation and Technology solutions that can meet performance e xpectations are in-scope for the program.
Funding type: Other 7

Publication date: 19 May 2025 &4 By Homeland Security Today April 1, 2023

Opening date: 14 May 2025 9:30am UK time

Closing date: 18 June 2025 11:00am UK time

I See the full opportunity details on the Innovation Funding Service.

Organisations can apply for a share of up to £12 million, inclusive of VAT, to work on
maturing and enabling the availability of CHERI Tools and Software components for
RISC-V embedded devices that implement the CHERI architecture extensions.
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We know from this experience that compartmentalization works

Re: double-free vulnerability in OpenSSH server 9.1 (CVE-2023-25136)

From: Qualys Security Advisory <gsa () qualys com>
Date: Mon, 13 Feb 2023 12:02:13 +0000

Hi all,

On Thu, Feb 82, 2023 at 01:02:04PM +0000, Qualys Security Advisory wrote:

Exploiting this wulnerability will not be easy: modern memory allocators

provide protections against double frees, and the impacted sshd process
is unprivileged and heavily sandboxed.

Quick update: we were able to gain arbitrary control of the "rip”
register through this bug (i.e., we can jump wherever we want in sshd's
address space) on an unpatched installation of OpenBSD 7.2 (which runs
OpensSH 9.1 by default). This is by no means the end of the story: this
was only step 1, bypass the malloc and double-free protections. The next
steps, which may or may not be feasible at all, are:

- step 2, execute arbitrary code despite the ASLR, NX, and ROP
protections (this will probably require an information leak, either
through the same bug or through a secondary bug);

- step 3, escape from sshd's sandbox (through a secondary bug, either in
the privileged parent process or in the kernel's reduced attack
surface).

OpenSSH is vulnerable to a bug

with remote-code execution

(1) https://seclists.org/oss-sec/2023/ql/92
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- step 2, execute arbitrary code despite the ASLR, NX, and ROP
protections (this will probably require an information leak, either
through the same bug or through a secondary bug);

- step 3, escape from sshd's sandbox (through a secondary bug, either in
the privileged parent process or in the kernel's reduced attack
surface).

OpenSSH is vulnerable to a bug
with remote-code execution

It is exploitable: attackers can break
allocator-based mitigations

(1) https://seclists.org/oss-sec/2023/ql/92
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From: Qualys Security Advisory <gsa () qualys com>
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Hi all,

On Thu, Feb 82, 2023 at 01:02:04PM +0000, Qualys Security Advisory wrote:
Exploiting this wulnerability will not be easy: modern memory allocators
provide protections against double frees, and the impacted sshd process
is unprivileged and heavily sandboxed.

Quick update: we were able to gain arbitrary control of the "rip”
register through this bug (i.e., we can jump wherever we want in sshd's
address space) on an unpatched installation of OpenBSD 7.2 (which runs
OpensSH 9.1 by default). This is by no means the end of the story: this
was only step 1, bypass the malloc and double-free protections. The next
steps, which may or may not be feasible at all, are:

- step 2, execute arbitrary code despite the ASLR, NX, and ROP

protections (this will probably require an information leak, either
through the same bug or through a secondary bug);

- step 3, escape from sshd's sandbox (through a secondary bug, either in
the privileged parent process or in the kernel's reduced attack
surface).

\ AN

(1)
* OpenSSH is vulnerable to a bug

with remote-code execution
* |tis exploitable: attackers can break
allocator-based mitigations
 Compartmentalization ultimately
mitigates the exploit by containing
it in an unprivileged process

(1) https://seclists.org/oss-sec/2023/ql/92
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« such that if one of the components is compromised, the attacker
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Compartmentalization

Software compartmentalization =

« design programs split into distrusting and isolated components

« such that if one of the components is compromised, the attacker
does not own the full program

Compartmentalization is applied to high-profile software

Server Software Web Browsers But also...
- O
NGMX fAPACHE B @ V@ o WRESHARK

"Less than 56 apps out of the 1,520 most popular

Beyond the popular software | mentioned
earlier, compartmentalization is rather rare

SoK: §, )
oK: Software (,nmpnrmmnmlizaliun

,
Nathtn Dauteniygpg !
nitic, ~sef

Debian applications are compartmentalized" e

(1) Lefeuvre et al., SoK: Software Compartmentalization, S&P 2025 R e

a anified mode)
fning, undersiang.
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Systematizing Compartmentalization

Here is how we approached the question:

Started by making a fundamental observation: experts do
not even agree on what compartmentalization is

 Define a fundamental model and consistent terminology for
compartmentalization

Propose a taxonomy for evaluating compartmentalization
approaches and apply it systematically to a wide set (200+)
of research and mainstream efforts

From this: extract a set of core challenges

32
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2. A systematic perspective on compartmentalization
3. The why: compartmentalization everywhere, what will it take?
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What is Software Compartmentalization?

Software compartmentalization is...

e asoftware engineering practice where developers break down a
program into groups of isolated/distrusting components, each
controlling only the resources they precisely require

 an embodiment of the principle of least-privilege

Fundamental idea:

* ifacomponentis compromised, attackers are restricted to the
permissions of the compromised component

* to escalate privileges and compromise the rest of the system, attackers
must find and exploit additional software vulnerabilities



What is Software Compartmentalization?

Going back to our previous example...

Direct access

HTTP |  FastCGI |
Parser : Module :
Web Server

Monolithic

=)

Compartmentalization

"SW Engineering Practice"

Isolation Boundary

HTTP FastCGI
Parser Module

m\Web Server

‘ Isolatlon prevents leak

SSL Keys

Compartmentalized
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What is Software Compartmentalization?

. . O Protection Domain
Going back to our previous example...

Isolation Boundary

. , FastCGI
Compartmentalizing adds a (potentially Module

very tricky) step on the attacker's path
towards taking over the program

Components now distrust each other "
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o ® Neinx e
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What is Software Compartmentalization?

Software compartmentalization is applicable to any kind of program

But also: hypervisors, firmware, etc.

50
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Software compartmentalization can be applied to new as well as
existing programs:

* When applied to existing programs, we talk about retrofitting

Some programs which included compartmentalization in their
design in the first place (non-exhaustive!):

gmail”®

...and some where it was retrofitted:

*Mail transfer agent, one of the first compartmentalized
programs to the best of my knowledge
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What is Software Compartmentalization?

Still, software compartmentalization as we refer to here applies within
one program, not across programs

Isolation Boundary

HTTP FastCGI 6
Parser Module
Web Server Operating System
SSL Keys NG:NX
Within one program Across programs
SW Compartmentalization Not SW Compartmentalization =6



What is Software Compartmentalization?

Still, software compartmentalization as we refer to here applies within

one progran More general isolation: share challenges and solutions
with software compartmentalization as we define it

S

>

Operating System

NGINX

AcCross programs

Not SW Compartmentalization -7



(1) Shu et al., A Study of Security Isolation Techniques, CSUR 2016

What is Software Compartmentalization?

Still, software compartmentalization as we refer to here applies within

one progran More general isolation: share challenges and solutions
with software compartmentalization as we define it

(1) M)

A Study of Security Isolation Techniques

RUI SHU, PEIPEI WANG, SIGMUND A. GORSKI Ill, BENJAMIN ANDOW, ADWAIT
NADKARNI, LUKE DESHOTELS, JASON GIONTA, WILLIAM ENCK, and XIAQOHUI GU,

Operating System

Security 1solation is a foundation of computing
This

ems that enables resilience to different forms of attacks.
article seeks to understand existing security isolation techniques by systematically classifying different
approaches and analyzing their properties. We provide a hierarchical classification structure for grouping

different security isolation techniques. At the top level, we consider two principal aspects: mechanism and '
policy. BEach aspect is broken down into salient dimensions that describe key properties, We break the ' o o o
mechanism into two dimensions, enforcement location and isolation granularity, and break the policy aspect

down into three dimensions: policy generation, pelicy configurability, and policy lifetime. We apply our
[ fication to a set of representative articles that cover a breadth of seeurity isolation techniques and
discuss tradeoffs among different design choices and limitations of existing approaches.

CCE Concepts: ®  General and reference —+ Surveys and overviews; ®  Security and privacy
Systems security;

Additional Key Words and Phrases: Security 1solation, access control, resilient architectures

ACM Reference Format:
Eui Shu, Peipei Wang, Sigmund A, Gorski [11, Benjamin Andow, Adwait Madkarni, Luke Deshotels, Jazon C rOS S p rog ra I I ls
Gionta, William Enck, and Xiaohui Gu. 2016. A study of security isolation technigues, ACM Comput. Surv,
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Software compartmentalization can target different trust models

Isolation Boundary What is Software Compartmentalization?

Going back to our previous example...

] 1solation Boundary

{ HTTP | | FastcGI HTTP FastCGI
S a n d box e o o ‘ { Parser i | Module Parser Module
w Web Server |:> Web Server
Direct access Isolation prevents leak
i v I Compartmentalization
i SSL K H SSL Keys
eys i "SW Engineering Practice" ¥

Menolithic Compartmentalized

Sandbox: component isolated to
protect the rest of the system

All but the sandbox is trusted
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What is Software Compartmentalization?

Software compartmentalization can target different trust models

Isolation Boundary

Sandbox

Safebox

Mutual Mutual
Distrust Distrust
Mutual
Distrust

Sandbox: component isolated to
protect the rest of the system

All but the sandbox is trusted

Safebox: component isolated to
protect it from others

Only the safebox is trusted

Mutual distrust: components
distrust each other
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What is Software Compartmentalization?

Software compartmentalization can target different trust models

These trust models are
distinct and result in different
software architectures

\ &

Isolation Boundary

e

Sandbox: component isolated to  Safebox: component isolated to Mutual distrust: components
protect the rest of the system protect it from others distrust each other

All but the sandbox is trusted Only the safebox is trusted

64
(1) https://fr.wikipedia.org/wiki/Panoptiquett/media/Fichier:Kilmainham_1.JPG (2) https://en.wikipedia.org/wiki/Bank vault#/media/File:WinonaSavingsBankvVault.JPG (3) https://en.wikipedia.org/wiki/File:Panmunjeom DMZ.png
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Software compartmentalization can target different properties

Isolation Boundary

S S
W W

Distrusted Distrusted

Integrity: compartment cannot Confidentiality: compartment
alter other compartment's data cannot read other
compartment's data



What is Software Compartmentalization?

Software compartmentalization can target different properties

Isolation Boundary

Gl [ | { m— )
Distrusted @ Distrusted @ Distrusted G/
Integrity: compartment cannot Confidentiality: compartment Availability: compartment
alter other compartment's data cannot read other cannot prevent other

compartment's data compartments from operating
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What is Software Compartmentalization?

Software compartmentalization can target different properties

Isolation Boundary

H Necessary: no confidentiality or

Distrusted @ availability without integrity

Integrity: compartment cannot
alter other compartment's data



My promise for this talk

A journey through twenty years of
compartmentalization

(]
A a ;A A - AlAaaAalNa aavala Al a ol a
v V @ \J VvV O \J NI U @ @ \J ° \

2. A systematic perspective on compartmentalization @
3. The why: compartmentalization everywhere, what will it take?

Take a step back: How do practitioners compartmentalize?
What does research say? What are open challenges?
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@ o Done with a policy definition method |

2. How to integrate the notion of compartmentalization

policies in software / programming models / idioms? /}\
o Done with a compartmentalization abstraction a

v
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3. How to enforce policies at runtime?
o Done with a compartmentalization mechanism ‘




Problem #1
How to determine the right policy to enforce?

Developers must define which components are to be separated and
which properties should be enforced on the resulting compartments
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Problem #1
How to determine the right policy to enforce?

Developers must define which components are to be separated and
which properties should be enforced on the resulting compartments
* The result is a compartmentalization policy

To design policies, developers employ a
Policy Definition Method
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Policy Definition Methods

Historically, people have done this manually.

Example: we want to split this C program.

A developer looks attentively at the program...
| HTTP | | FastCGI |
| Parser | ! Module | "I do not trust this | HTTP | | HTTP
- oo o rm o - | component’ L Parser | sandpox LParser
: L_lzi_gty_i : ) -_-_-_ _i | Holds sessio.n keys
"I particularly value | ssL 1
(Fictive monolithic program) this component” :_Libr‘a ry :

Formally-verified




Policy Definition Methods

Historically, people have done this manually.

Example: we want to split this C program.

A developer looks attentively at the program...

r—=-=-—== - I L -
i HTTP 1 | FastCGI |
' | . F——=—== ~
| Parser | Module | "I do not trust this | HTTP | HTTP
" | | >

IETaas aaaaa L component L Parser | sandbox LFarser
' Library : ' : o .

""""" "I particularly value | ssL 1 ) SSL

o | o | i .

(Fictive monolithic program) this component” L Library safebox Library

This is still the most common way to do it today.



Systematizing Policy Definition Methods

Policy Definition Methods are a very active research
area, with goals such as...

Minimize developer effort o
o Maximize performance
Maximize soundness

o . Maximize security of interfaces
Minimize over-privilege

We systematized these works in our SoK



Systematizing Policy Definition Methods

Policy Definition Methods are a very active research
area, with goals such as...

Minimize developer effort o
o Maximize performance
Maximize soundness o _ .
L . Maximize security of interfaces
Minimize over-privilege

(1)

oftware Compartmentaizafion

120 Lefeuvre™ y,
The Ur unm o British Columpig, e udmm"

Did Chiay
Sl Somconducr, <13, gon I

Serenii

of Manctesier

g
i g
with limited i ot

o st

feges by lang b P
€t cogni

b

v I 65, Pt

[Em ml)p.w\SNH‘lH m

e et e Promise.
PUOMies are plemy; congy
el nemary safery
i il s 54 it
; dhr 154 181). o tneate gy o 1o

et 1 m :x:[ or ».mm sacks (14) gt

Sidecanns 137 175,
Shanechs (137, 176,

0 o
existing approache -

2ot povig
Do oo e

v cxampl e oty

b o o
towards. nnaung I‘ .
[l

ot s

" threa
els
e LIt Specutated iy
: Humv““‘w P e s Stuion v g g
ot ations of mech

5aps we mmmm between re .
= e i, ol

ecds, This "
ot ) e strong secy
5 the istoricat ag 8y Scnts (129, o

< prob

e of com
A fremeway oy
™ 10 ot e

. d k . S K
T Ul oty our gy g PO o crypogrpes
e SyS t e a t I Z e t e S e W O S I O u O “'mM"vm-.m...,,.w\m-.,m... e e, 11 140 13010, o (0
o b i et 7 44700 by Ralng g 2 b v
e n:w....b,,., s o, I e <TTOaphy ibraren  vE
it 4m1 i 1‘.,‘“,“,,, i M”m i S s TS pope i
ey 0. e

TABLE 1: Taxonomy of Policy Definition Methods. PDMs that also propose an abstraction are marked with #. Manual ( ot
) . . L 1w "
and fully automated (@) policies do not leverage a policy language, thus the column features Not/Applicable roduction
IS decades of ftor, vy
— Antowration Pollcy Language Tipe Separation | Anabial | o — [ Language | Addirional God omatlarn hem remmal ’,’(““"“‘“‘\“"mv soft Existing niadegs - e and ;,mwa‘\y, o
Separation Method Annotations | Placewent Rales | G Approach | Sublect Selectton | g, i | Perfarmance | Taterfuce Safes oo et g (o 5y o pdmowe S ‘;‘}’ "'w‘unnmu‘lf'."“,"”’,“”’" o
[ | wheh protections gy oy ST the Tog e SN by 0 ey o EIOE 0 oo
T - - = e o = ’H“h"v‘:mlxu pord ;h!‘“rn!y\uy% \«um\kr\:viu A systemagic «"m.“‘"‘“‘;Hm-\lhxwhvmu ,nmhn;
T Of he it 4 COMPIOSE of o pot oy e he Po SO Companimepi s & £ TSP ety s
[t T | Function Conde<er T £0he o oo, 4.,“,‘,,,",,,”5,,‘” i oy e ‘"»nwm,,“, i S 10 g s
MPD* 1 192 @ Componcnt Fw— . ry et of e o o G s, T o
CabileOS 1 = . iLibrary 3 < po ey g 28l nlumm\;r:l:‘\dxl‘!‘;” o' key wpety
ction mpac bronteged comporsos, 1 in Aot b eTengny
g : ) ;ulzh‘.L: : o » ‘,;,‘r,m,ﬂ,\?wm, s pebogy | P e W\ s i o
RLBox® 111 = 3 Function - - and W s (106 130 15 08 05 e, 400 mpircny ﬁm,y:w for etining, undersgn.
o 181 anction weation Kemets (56, 5, 308 gon 258 se s Wi compc AeNttion, Ty oy
Ear (I Ay ) - - o 98 5 135 m' e ey 1062 S Comatncn s ST ot oy
SeCage® s . Function Hybrid . R o0 1 i
| PuSplic™ 1) = e Function Static e '";‘;"j:;\g;gn,;ym‘&l pip b
) . Function Hybrid . i s i Ot
C) . Function Static . D
[=] L] Any Static L]
) . Any Static .
) . Any Static D D
] . . Static L] L]
= - ) Hybrid . .
3 ) . . Static Conde<eniric .
Cali* o) ] . Static Code-centric
CompartOS™ (33 [ ) Static Codecentric
[ Enclosure®™ 1) e 1 [} Static. .
| BreakApp® - ) " Static )
[ Comy mkm* e 1 . Static D)
[ ACES* ot - . Function Any” Codecentr 1 L f t I S K N S ft
ogmnCorer s . Ficion | Dy | Codecnric | ( ereuvre et al., SO0K: >ortware
L Any Dynamic Coddeceniric .
ided 1 T Loader-based. st analysis, dyr ysis possible o] C t I . t- S& P 20 25 87
ompartmentalization,




stematizing Policy Definition Methods

Policy definition methods table from the paper

TABLE 1: Taxonomy of Policy Definition Methods. PDMs that also propose an abstraction are marked with #%. Manual (O)
and fully automated (@) policies do not leverage a policy language, thus the column features Not/Applicable.

. . i Policy Language Type Separation Analysis N § . Language | Additional Goals of Automation
Policy Definition Method Agtgn;a:’(’m Anm)mria)ns | Pé:,'ac'fmegf Rules Grgnulariw Apprgach Subject Selection Spfc'iﬁf’ Performance | Inr;:'fac'e Safety
[ Manual 1281, [...] | (@) | N/A | N/A | Any | Manual | Any | [@) [ N/A | N/A |
Crowbar [70] [¢] O O Function Dynamic Code-centric [@) O O
MPDs* [191, 192] @ O O Component Hybrid Code-centric [ ] ] @]
CubicleOS* 211] ) ] o pLibrary Static” Code-centric ] O O
Google SAPT* 1221 @ ] ) Function Static Code-centric ] O O
FlexOS¥ [143, 161] [¢) [ ) peLibrary Dynamic Code-centric ] (] @)
RLBox* [181] ¢ ] O Function Static Any [ O [
SOAAP* [117] ) ® @) Any Hybrid Any [ ® [
SeCage* [171] ] [ ] @] Function Hybrid Code-centric ] O @]
PtrSplit* [169] ] ] O Function Static Code-centric [ ] O @]
PrivTrans™ [73] - [ O Function Hybrid Code-centric ] O @)
Glamdring* [165] [« [ O Function Static Code-centric ] O ]
Shreds™® 1871, CAPACITY™ [105] ) ] O Any Static Code-centric @) O [ ]
DataShield™ [77] (=) ] O Any Static Code-centric O O [ ]
Swift™ [89] - ] O Any Static Code-centric ] O ]
Jif¥ 1261] [w) [ ) Any Static Code-centric ] O ]
PM [170] [<] o e Function Hybrid Code-centric ] [ ] O
KSpli[* [133] () [ ) Driver Static Code-centric ] O @]
Cali* [63] S O o Library Static Code-centric O O O
CompartOS* [55] <) O (] Linkage Unit Static Code-centric @) O @]
Enclosure™ 1] <) O ) Package Static Code-centric ] O O
BreakApp* [235] [w] O [ ] Package Static Code-centric ] O @]
CompARTist* [132] () O ) Library Static Code-centric ] O O
ACES™ [90] - O ) Function Any3 Code-centric O O O
ProgramCautter [253] ® N/A N/A Function Dynamic Code-centric o O O
1tSCOPE [202], SCALPEL [203] ® N/A N/A Any Dynamic Code-centric O o @)

I'O = manual, ® = guided manual, ® = policy refinement, @ = full automation. > Loader-based. > Implemented with static analysis, dynamic analysis possible [90).



Names of the policy definition methods we consider

Characteristics we included in the taxonomy

. L. j Policy Language Type Separation Analysis . . Language | Additional Goals of Automation

e Lk glicney Agtgn;af?n Annomrio}r]’is | P%acfme;z{) Rules Grgnularity Apprzach Bub s ceree Spfciﬁi Performance | Inte{face Safety
[ Manual [12s], [...] | O | N/A | N/A | Any | Manual | Any | O | N/A \ N/A |
Crowbar [70] @ O O Function Dynamic Code-centric O O O
MPDs™ [191, 192] @ @) @) Component Hybrid Code-centric o (] O
CubicleOS™ 11 @ (] (] pLibrary Static” Code-centric ® @) O
Google SAPI* [22] @ @ [ ] Function Static Code-centric ® @) O
FlexOS™ (143, 161] C) [ ] [ ] pLibrary Dynamic Code-centric o [ ] O
RLBox™ [131] @ ® Q) Function Static Any ® O )
SOAAP* [117) ® ° 0 Any Hybrid Any ° ° °
SeCage* [171] ) [ ] O Function Hybrid Code-centric o @) O
PtrSplit* [169] ) o O Function Static Code-centric ® O O
PrivTrans™ [73] (w) o O Function Hybrid Code-centric ® O O
Glamdring* [165] () [ ] @) Function Static Code-centric ® O ®
Shreds™ (871, CAPACITY™ [105] @ (] O Any Static Code-centric O @) ]
DataShield* (771 ] (] @) Any Static Code-centric O @) o
Swift* 9] & o @) Any Static Code-centric ® @) ®
| 3if [261) @ [ ] (] Any Static Code-centric o @) o

PM (170 (<) (] (] Function Hybrid Code-centric o (] O
KSplit’!= [133] @ (] (] Driver Static Code-centric o @) O

Cali* (65] @ O ) Library Static Code-centric O @) O
Compar[OSﬂz (551 v O (] Linkage Unit Static Code-centric O O O
Enclosure™ [111] @ O (] Package Static Code-centric @ O @)
BreakAppsE [235] w) @] o Package Static Code-centric [ ] @) O
CompARTistﬂa [132] ) O () Library Static Code-centric ® O O
ACES¥ [90] (w) O (] Function Any3 Code-centric @) O O
ProgramCutter [253] [ N/A N/A Function Dynamic Code-centric o O O
1SCOPE [202], SCALPEL [203] [ ] N/A N/A Any Dynamic Code-centric @ Y O

'O = manual, ® = guided manual, ® = policy refinement, @ = full automation. > Loader-based. * Implemented with static analysis, dynamic analysis possible [90).
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. L. j Policy Language Type Separation Analysis . . Language | Additional Goals of Automation
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Google SAPI* [22] @ @ [ ] Function Static Code-centric ® @) O
FlexOS™ [143, 161] ® [ ] (] pLibrary Dynamic Code-centric @ (] @)
RLBox™ [131] @ ® Q) Function Static Any ® O )
SOAAP* [117) ® ° 0 Any Hybrid Any ° ° °
SeCage* [171] ) [ ] O Function Hybrid Code-centric o @) O
PtrSplit* [169] @ @ O Function Static Code-centric ® O O
PrivTrans™ (73] () o O Function Hybrid Code-centric ® O O
Glamdring* [165] () [ ] O Function Static Code-centric ® O ®
Shreds™ (871, CAPACITY™ [105] @ (] O Any Static Code-centric O @) ]
DataShield* (771 ] (] @) Any Static Code-centric O @) o
Swift* 9] & o @) Any Static Code-centric ® @) ®
| 3if [261) @ [ ] (] Any Static Code-centric o @) o
PM [170] () o (] Function Hybrid Code-centric o (] @)
KSplit’!= [133] @ (] (] Driver Static Code-centric o @) O
Cali* (65] @ O ) Library Static Code-centric O @) O
Compar[OSﬂz (551 v O (] Linkage Unit Static Code-centric O O O
Enclosure™ [111] @ O (] Package Static Code-centric @ O @)
BreakAppsE [235] ) O (] Package Static Code-centric o O @)
CompARTistﬂa [132] v O (] Library Static Code-centric ® O O
ACES™ [90] (o} O o Function Any3 Code-centric @) @) O
ProgramCutter [253] [ ] N/A N/A Function Dynamic Code-centric @ O O
1SCOPE [202], SCALPEL [203] [ ] N/A N/A Any Dynamic Code-centric @ o O

'O = manual, ® = guided manual, ® = policy refinement, @ = full automation. > Loader-based. * Implemented with static analysis, dynamic analysis possible [90).
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Google SAPI* [22] @ @ [ ] Function Static Code-centric ® @) O
FlexOS™ (143, 161] C) [ ] [ ] pLibrary Dynamic Code-centric o [ ] O
RLBox™ [131] @ ® Q) Function Static Any ® O )
SOAAP* [117) ® ° 0 Any Hybrid Any ° ° °
SeCage* [171] ) [ ] O Function Hybrid Code-centric o @) O
PtrSplit* [169] ) o O Function Static Code-centric ® O O
PrivTrans™ [73] (w) o O Function Hybrid Code-centric ® O O
Glamdring* [165] () [ ] @) Function Static Code-centric ® O ®
Shreds™ (871, CAPACITY™ [105] @ (] O Any Static Code-centric O @) ]
DataShield* (771 ] (] @) Any Static Code-centric O @) o
Swift* 9] & o @) Any Static Code-centric ® @) ®
| 3if [261) @ [ ] (] Any Static Code-centric o @) o
PM (170 (<) (] (] Function Hybrid Code-centric o (] O
KSplit’!= [133] @ (] (] Driver Static Code-centric o @) O
Cali* (65] @ O ) Library Static Code-centric O @) O
C()mpar[OSﬂz (551 v O (] Linkage Unit Static Code-centric O O O
Enclosure™ [111] @ O (] Package Static Code-centric @ O @)
BreakAppsz [235] w) @] o Package Static Code-centric [ ] @) O
CompARTistﬂa [132] ) O () Library Static Code-centric ® O O
ACES¥ [90] (w) O (] Function Any3 Code-centric @) O O
ProgramCutter [253] [ N/A N/A Function Dynamic Code-centric o O O
1SCOPE [202], SCALPEL [203] [ ] N/A N/A Any Dynamic Code-centric @ Y O

'O = manual, ® = guided manual, ® = policy refinement, @ = full automation. > Loader-based. * Implemented with static analysis, dynamic analysis possible [90).

This talk: present a few interesting aspects, many more in the paper (=
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Automation is a key research topic in PDMs

Entirely
manual

Policy Definition Method Aumman?n
cCoSe

[ Manual [12s], [...] |

Crowbar [70]
MPDs* [191, 192]
CubicleOS™ [211]
Google SAPIF [22)
FlexOS™ [143, 161]
RLBox™ [131]
SOAAP* [117]

SeCage* [171]
PtrSplit* [169]
PrivTrans™ (73]
Glamdringﬁlc [165]
Shreds™ (871, CAPACITY ™ [105]
DataShield® [77]
Swift™ (8]

[ Jif (261

PM (170

KSplit* [133]

Cali* (65)
CompartOSE 551
Enclosure™ [111]
BreakAppﬂz [235]
CompARTist* [132]
ACES™ [90]

Fu "y ProgramCutter [253]

WUSCOPE [202], SCALPEL [203]

auto matEd "' O = manual, ® = guided manual
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Automation is a key research topic in PDMs

Entirely
manual

Fully
automated

Policy Definition Method Agtgn;m.i?n Anmft{;lritco‘r}?f Trgz?f:@e??;ules

[ Manual [12s], [...] | N/A | N/A |
Crowbar [70]
MPDs™ (191, 192]

CubicleOS* 211]

Google SAPIF [22)

FlexOS™ [143, 161]

RLBox* [181]

SOAAP* [117]

SeCage* [171]

PtrSplit* [169]

PrivTrans™ (73]

Glamdringﬁlc [165]

Shreds™ (871, CAPACITY ™ [105]

DataShield® [77)

Swift* [89]

Jif* [261]

PM (170

KSplit* [133]

Cali® [65]

CompartOS* 551

Enclosure™ [111]

BreakAppﬂz [235]

CompARTist* [132]

ACES™ [90]

ProgramCutter [253]

WUSCOPE [202], SCALPEL [203]

L OO OEOROEORORCRCRCRCRCROICIOIUIC e e e lieliele e

o0 e e e e e ee OO0 00Ol eeeO0O

IOOOOOO.......... oo e e e 0

N

[ They achieve automation

"' O = manual, ® = guided man

leveraging different kinds of
inputs from developers.
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Automation is a key research topic in PDMs

Entirely

Policy Definition Method Aummati?n Analysis
I ocee Approach
Mmanua [Manual 120, [...] o
Crowbar [70] [¢) Dynamic
MPDs™ (191, 192] ® Hybrid
CubicleOS™ [211] ® Static?
Google SAPIF [22) ® Static
FlexOS™ [143. 161] ® Dynamic
RLBox™ [131] ® Static
SOAAP* [117] @ Hybrid
SeCage™ 171] © Hybrid
PtrSplit* [169] ) Static
PrivTrans™ (73] (w) Hybrid
Glamdring™ [165] () Static
Shreds™ (871, CAPACITY ™ [105] (] Static
DataShield® [77] S Static
Swift* [s9] ® Static
[ Jif (261 @ Static
PM [170] < Hybrid
KSplit™ (1331 @ Static
Cali* (65 S Static
CompartOS* 551 ) Static
Enclosure™ [ @ Static
BreakApp™ [235) S Static
CompARTistﬂa [132] ) Static
ACES™ [00] w) Any3
Fu "y ProgramCutter [253] [ )
WUSCOPE [202], SCALPEL [203] [ ]

aUtomatEd "' O = manual, ® = guided manual, They emp|0y diﬁerent kindS
of analysis techniques (static,

dynamic, hybrid)




Automation is a key research topic in PDMs

Entirely
manual

Fully
automated

Policy Definition Method
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WUSCOPE [202], SCALPEL [203]

"' O = manual, ® = guided manual,

Specializing on a particular
programming language is often
necessary to simplify the problem
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(1) Liu et al., PtrSplit: Supporting General Pointers in Automatic Program Partitioning, CCS 2017

Pick one influential example from the literature: PtrSplit'”

Language | Additional Goals of Automation

- . Automation Policy Language Type Separation Analysis
Policy Definition Method Specific | Performance | Interface Safety

cmse' |Annotations | Placement Rules | Granularity Approach Subject Selection

PtrSplit* [169] ‘ ) I o O Function Static Code-centric o O O
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(1) Liu et al., PtrSplit: Supporting General Pointers in Automatic Program Partitioning, CCS 2017

Pick one influential example from the literature: PtrSplit'”

Language | Additional Goals of Automation

o Tyafiisi Automation Policy Language Type Separation Analysis
Policy Definition Method Specific | Performance | Interface Safety

- . Subject Selection
cmse' |Annotations | Placement Rules | Granularity Approach J

The program is then

Semi-automated tool split at arbitrary
for safeboxing code function boundaries
PtrSplit* [169] ‘ ) | o | O | Function | Static I Code-centric | o I O O
( Annotate valuable data, The split is done statically by h
PtrSplit then automatically the tool, i.e., just by looking at
cuts the program to the code (vs. a dynamic tool
\safebox them y Qhat would run the program) )
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Open Problem in Policy Definition Methods

Automated Policy Definition Methods trade off
security and/or performance for developer effort.

Take our example: our split cuts a hot path. We can
spend more developer time to look attentively and
refine our cut to avoid the critical code paths.

Automated methods struggle to do that since the
semantics of programs fundamentally cannot be

Pan Module '
r =)= ——
[ SSL I
13 l
Rl LA

(Fictivelmonolithic program)

Network

ca pturEd automatically. [mnon-tﬁvia/ semantic

properties of programs are undecidab/e"J

Which trade-offs are desirable in practice?




Bigger Picture of Compartmentalization

Propose to view compartmentalization as 3 problems: ?

~ B

1. How to determine the right policy to enforce?
o Done with a policy definition method |

2. How to integrate the notion of compartmentalization

@ policies in software / programming models / idioms? /}\
o Done with a compartmentalization abstraction a

v

O

3. How to enforce policies at runtime?
o Done with a compartmentalization mechanism ‘
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Having defined a policy, we need to express it in the program.
Developers perform this using programming abstractions.
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Problem #2
How to implement policies?

Having defined a policy, we need to express it in the program.
Developers perform this using programming abstractions.

Historically, people have done this with processes (=the process abstraction).

l';ﬁ_ _____ f—— - Example: assume we sandbox the HTTP parser.
HTTP | | FastCGI |
I ! !
, Parser , | Module , fork() SetupIPC... chroot()
—————— === — e mm = =y
. ossL1 | Cwtte [ wrTe
! L_iEr‘_aEy_: :_ B '_‘_'_ _: :_ Parser : Parser

(Fictive monolithic program) setuid() seccomp()

This is still the most common way to do it today.



Compartmentalization Abstractions

Programming abstractions for compartmentalization are also a
very active research area:

Minimize developer effort (intuitive, easy to use) Making the most of a specific
Leverage domain-specific knowledge (threat model, deployment) enforcement mechanism
Maximize security properties that can be achieved Support generic mechanisms



Compartmentalization Abstractions

Programming abstractions for compartmentalization are also a
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Minimize developer effort (intuitive, easy to use)

Leverage domain-specific knowledge (threat model, deployment) €enforcement mechanism
Support generic mechanisms

Making the most of a specific

Maximize security properties that can be achieved
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I Inherited from thread-like semantics, > from process-like semantics, * from the Nested Kernel, * The PDM does (to a certain extent).
5 The abstraction could plug onto any intra-AS mechanism, though the paper or documentation claims reliance on a particular one.
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This talk: present a few interesting aspects, full discussion in the paper
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T Inherited from thread-like semantics, > from process-like semantics, * from the Nested Kernel, * The PDM does (to a certain extent).
5 The abstraction could plug onto any intra-AS mechanism, though the paper or documentation claims reliance on a particular one.
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Abstractions often specialize on a particular threat model

For sandboxing
(libraries, drivers)

For safeboxing
(crypto keys,
privileged code)

Target , . , Semantics Abstraction Properties Interface
Class U/K?HV Abstraction Subject Selection |-z [ASSIGN | Gramularity [C ] 1p| AR Saf{:zy
Virtines [242] Code-centric S MES Function [ AN RNGRNG) O
ACES 90 Code-centric S SHM Function [ AN REORNG) O
SeCage [171] Code-centric S SHM Function @/ ® 0|0 O 4
HODOR [124] Code-centric S SHM Library e ®e|O|O o
CAPACITY [105] Code-centric S SHM Any el@e[0O|0O o*
U Jif 2611 Code-centric S+A MES Any ® @ OO [
Arbiter [241] Data-centric S SHM Function e @00 O
- Secure Memory Views (SMVs) [128] Data-centric S SHM Function’ [ AN REORNS) O
§ Salus [226] Data-centric S SHM Function e e | O O
'é’ Light-Weight Contexts (LwCs) [167] Hybrid S SHM Function' e |0 O Page Table”
3 POSIX Processes (and earlier instances) [93] Hybrid Any Any Any AK JEORE®) O Page Table
g SOAAP 1171 Hybrid S SHM Any e|/@e|0O|0O of IZ]
= libMPK [190] Hybrid S SHM Any e @O O O Protection Keys
CheriOS [108] Code-centric Any Any U/K-component | @ | @ | O | O O CHERI
Microkernel Servers [106], [...] Code-centric Any MES U/K-component | @ | @ | O | O O IZH
Mutable Protection Domains (MPDs) [191, 192] Code-centric S SHM U/K-component | @ | @ | O | @ @] °
U+K  [RedLeaf [184] Code-centric S SHM U/K-component | @ | @ | @ | O @) Safe Languages
CubicleOS [211] Code-centric S SHM pLibrary ® 0O | O O Protection Keys
FlexOS [161] Code-centric S SHM pLibrary IK KSR S O %]
XMP [196] Code-centric S SHM Any ® ®@|O|O O [Z]
Monza [35] Hybrid A SHM Function' Olelolo [@) IZH
VirtuOS [186] Code-centric S+ A SHM K-component (@ (@ (@ | O O Virtual Machine (EPT)
K HAKC 11731 Code-centric S SHM Function e @O0 [@) ARM PAC + MTE
LibrettOS (1871 Code-centric S SHM K-component @ | @ | @ | @® O IZH
Cali [65] Code-centric S SHM Library ®@ e 0|0 O o
CompARTist [132] Code-centric S MES Library e @00 O a°
U Enclosure [111] Code-centric S SHM Package ®( O OO O [%}
= Google Sandboxed API (SAPI) [22] Code-centric S MES Function [ AN BN BEe) O o’
L § valzox / uSWITCH [181, 195] gyl;rlg g SHM iunct?onl : : 8 8 ; g}
S edge [70] Ti SHM unction : —
“ U+K ComiartOS [55] Code}icentric S SHM Linkage Unit (@ (@ @ | O O CHERI What is Software Compartmentalization?
= LVDs / KSplit 1133, 185] Code-centric S MES K-component ® O OO @) 2N Software compartmentalization can target different trust models
XFI/LXFI (107, 172] Hybrid S SHM K-component | @ @ | O[O o SFI [ tsoltion Boundary i
HV Nexen [221] Data-centric S SHM |[Per-VM domain (@ | @ | O | O O Page Table’ I - "““‘“’““ o
U Shreds (871 Code-centric ) SHM Any ® e 0|0 ot a° i A v f
Privman [147] Code-centric S MES Function ® e 0|0 O Page Table” S ]
o | Privtrans (73] Code-centric S MES Function ® e 0|0 O Page Table’ Sandbox: component isolatedto  Safebax: component isolatedto  Mutual distrust: components
S '§ Swift [89] Code-centric S+A MES Any e/@|(O[O [ 7] provectthe restoffia getant.. | groesstbfrom oders dstrusteach other
5 = Y Glamdring [165] Code-centric IS] MES Function e @O0 ® IZH Alpameebaiimadl  Osyie ool
= § PtrSplit / Program Mandering [169, 170] Code-centric S MES Function ® 0 OO o o’
Q DataShield [77] Hybrid S SHM Any ® 0 OO o° Bounds Checking
ERIM [232] Hybrid S SHM Any /@ O[O O Protection Keys
K Nested Kernel [94] Code-centric S SHM Function e @|/O|O [@) Page Table

I Inherited from thread-like semantics, > from process-like semantics, * from the Nested Kernel, * The PDM does (to a certain extent).
5 The abstraction could plug onto any intra-AS mechanism, though the paper or documentation claims reliance on a particular one.
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A lot of interest in abstractions for kernel compartmentalization
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I Inherited from thread-like semantics, > from process-like semantics, * from the Nested Kernel, * The PDM does (to a certain extent).

5 The abstraction could plug onto any intra-AS mechanism, though the paper or documentation claims reliance on a particular one.
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A lot of interest in rethinking communication and sharing between domains
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" Inherited from thread-like semantics, > from process-like semantics, * from the Nested Kernel, * The PDM does (to a certain extent).
5 The abstraction could plug onto any intra-AS mechanism, though the paper or documentation claims reliance on a particular one.
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Interest in abstractions that compose with different isolation mechanisms

T Inherited from thread-like semantics, > from process-like semantics, * from the Nested Kernel, * The PDM does (to a certain extent).
5 The abstraction could plug onto any intra-AS mechanism, though the paper or documentation claims reliance on a particular one.
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Pick one influential example from the literature: RLBox!

(1) Narayan et al., Retrofitting Fine Grain Isolation in the Firefox Renderer, USENIX Security 2020
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Pick one influential example from the literature: RLBox!
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(1) Narayan et al., Retrofitting Fine Grain Isolation in the Firefox Renderer, USENIX Security 2020



Pick one influential example from the literature: RLBox!

Target . . . Semantics Abstraction Properties Interface Design Bound
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(1) Narayan et al., Retrofitting Fine Grain Isolation in the Firefox Renderer, USENIX Security 2020



Pick one influential example from the literature: RLBox!

Target

Class |y fuy

Semantics Abstraction Properties Interface Design Bound

Ab: ti ject Selecti .
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Mutual Distrust

U+K
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code (such as libraries)
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communication with function
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Y,U )
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up cross-compartment data sharing
3

(1) Narayan et al., Retrofitting Fine Grain Isolation in the Firefox Renderer, USENIX Security 2020



Pick one influential example from the literature: RLBox!

Target

Class |y fuy

Semantics Abstraction Properties Interface Design Bound

Ab: ti ject Selecti .
bstraction Subject Selection CALL | ASSIGN Granularity CTI[A[R]| Safety to Mechanism

Mutual Distrust

U+K

Abstraction specialized
for sandboxing untrusted
code (such as libraries)

Implements cross-compartment
communication with function

-
U

{

Sandbox

calls, which is intuitive

RLBox / SWITCH [181, 195] | Hybrid | § | sum | Function [@[@[O[0O] @ | g |

U+K

HV

Safebox
Dual World
o

K

Builds on shared memory to { Enforces confidentiality and integrity

up cross-compartment data sharing J

(1) Narayan et al., Retrofitting Fine Grain Isolation in the Firefox Renderer, USENIX Security 2020



Pick one influential example from the literature: RLBox!
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Semantics Abstraction Properties Interface Design Bound

Ab: ti ject Selecti .
bstraction Subject Selection CALL | ASSIGN Granularity CTI[A[R]| Safety to Mechanism

Mutual Distrust

U+K

Abstraction specialized
for sandboxing untrusted
code (such as libraries)
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-
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{
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communication with function | pges not depend on a specific
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Builds on shared memory to { Enforces confidentiality and integrity
up cross-compartment data sharing J

(1) Narayan et al., Retrofitting Fine Grain Isolation in the Firefox Renderer, USENIX Security 2020
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Most abstractions consider the hardening of
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........

Some do! (1) @ |

Using capabilities to exchange
data temporarily and with
reduced permissions

Leveraging C++ types to
ensure all interface-
crossing data is checked

Opaque data types eliminate the
need for checks on exported-and-
reimported objects

Do as many of these checks |
as possible automatically |

(2) Amar et al., CHERIoT RTOS: An OS for Fine-Grained Memory-Safe Compartments on Low-Cost Embedded Devices, SOSP 2025
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Open Problem in Compartmentalization

Abstractions

Most abstractions consider the hardening of
compartment interfaces an orthogonal problem.

Some do! 1)

........

[Do as many of these checks |

as possible automatically

Leveraging C++ types to

ensure all interface-

crossing data is checked

More work needed in that direction.

2) [

Using capabilities to exchange
data temporarily and with
reduced permissions

Opaque data types eliminate the

need for checks on exported-and-
reimported objects

(2) Amar et al., CHERIoT RTOS: An OS for Fine-Grained Memory-Safe Compartments on Low-Cost Embedded Devices, SOSP 2025

(1) Narayan et al., Retrofitting Fine Grain Isolation in the Firefox Renderer, USENIX Security 2020



Bigger Picture of Compartmentalization

Propose to view compartmentalization as 3 problems: ?

~ B

1. How to determine the right policy to enforce?
o Done with a policy definition method |

2. How to integrate the notion of compartmentalization

policies in software / programming models / idioms? /}\
o Done with a compartmentalization abstraction a

v

O

3. How to enforce policies at runtime?
@ o Done with a compartmentalization mechanism ‘
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This is achieved with an enforcement mechanism.

Page tables (via the MMU) are the historical enforcement mechanism.
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Problem #3
How to enforce policies?

Finally, we must enforce the policy at runtime.
This is achieved with an enforcement mechanism.

Page tables (via the MMU) are the historical enforcement mechanism.
Example from earlier: assume we implemented the sandbox with processes.

Address space (page table) 1

< > arte | | Fastcer

- g— - Parser ' Module |

:E: The memory management Lo
- - unit enforces isolation Sl j—— ===
"TIIIL] | SSL : ] I
' Library | | D

Address space (page table) 2
(Fictive monolithic program)

This is still the most common way to do it today.
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Enforcement Mechanisms

Enforcement mechanisms (for compartmentalization)
are also a hot area:

Maximize performance

Minimize hardware cost and complexity

Enable for stronger security properties

TABLE 3: Taxonomy of Compartmentalization Mechanisms. Page-Table = PT; Permissions: Read, write, Execute, Address

(create pointers to), @ = supported,

= supported by some, O = unsupported; Overhead: free=0 <® < ® < @ < ®@=very costly.

‘ ‘ Mechanism Class ‘ 5,:::22':‘; | E':‘t ::f:.’ TCB RP(Jr\fm":”“A Granularity ‘ Ne of Domains ('.’? :j::::”:;(i:g’;}?ﬂfﬁf;z.:”
Physical Separation [205] Mutual | Full | @ Physical Mem. Ne of machines | ® — @ (link latency)
Access Bits [25], EPT / vmfunc |26 T Mutual | Full | @ Page oo ® (PT switch + )
PT Supervisor Bit (25, 158, 159] Single [Full | @°| @°| @ Page 2 (kernel/user) | @ (interrupt + )
Mondrian Memory Protection (MMP) [249) Mutual | Full | @°| @°| @ Word =] & (MMP hardware + )
o Protection Keys (13, 27, 53, 217, 259] Mutual [Full | @ | @ | © Page 8-1024 (13, 217]" | @ (special register flip + °)
§ Segmentation-like Hardware (109, 178 Single [Full | @ | @ | O | O | Byte - Page 1781 | 2 (safe/unsafe) ™ (’)
E Enclaves [28. 92) Mutual | TEE | @ | @ | @ | O | Page oo @ (enclave call, incl. 7)
< | TEE [ Confidential VMs (10, 29, 30] O Mutual [TEE| @ [@ [ @ | O [ Page ) @ (> EPT switch)
World Separation [9, 14] O Single | TEE | @ | @ | @ | O | Page 2 (trusted/rest) | @ (world switch, incl. 7)
Hardware Capabilities [57, 78, 180, 236, 244] @] Mutual [Full | @ | @ | @ | @ | Byte [='s} - (special instr. + 7)
Bounds-Checking Hardware (47, 95, 148, 155, 212] [ Mutual | Full | @°| @ O[O | Byte ) @& (bounds hardware + °)
(Other) Tagged Architectures [12. 21. 99, 131, 138, 204, 224, 246] ® Mutual | Full | @°| @°| O | O | Byte - Words 16" - 0o n3s] | ® (tagging hardware + ™)
R Software Capabilities (83, 125) O Mutual [Full (@ | @ | @ | @ | Byte oo & _ @ (impl. dep., incl. )
= | Bounds-Checking Software 225 ® Mutual [Full | @ | @ | © | O | Byte =] & _ @ (impl. dep.. incl. V)
.,2; Safe Languages (50 / Software Verification [154, 163] (@) Single [Full [@ | @@ | @] Byte 2 (safe/unsafe) | O (function call)
:2 Software Fault Isolation (79, 119, 141, 142, 179, 238, 257, 262] O Single [Full | @ | @ | @® | @ | Byte oo [¢] (‘)
Memory Encryption / AES-NI 155 O Mutual | Full | @ | @ | O 128 bits oo ® (copy key + encrypt + 7)

"In Ring 0. * Not all combinations of R/W/X supported. © Covers many granularities (13). °

Some works (113, 173, 190] increase it. * Register

r saving/scrubbing, stack switch.
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Mechanism Class EZZZ’; ﬂz;zgerl TCB Rpri:fnlrS;(OTsA Granularity Ne of Domains (‘2 fﬁ?%&?ﬁggﬂg‘;ﬁ; )
Physical Separation [205] O Mutual | Full | @ | @ | @ | O | Physical Mem. Ne of machines | @ — @ (link latency)
Access Bits (251, EPT / vmfunc [26] ©' |Mutal | Full | @° @°| @] O | Page 00 @ (PT switch + °)
pr | Supervisor Bit 25, 158, 159] O Single |Full | @°| @°| @°| O | Page 2 (kernel/user) | @ (interrupt + °)
Mondrian Memory Protection (MMP) [249] O Mutual | Full | @°| @° @°] O | Word %) @ (MMP hardware + 3)
) Protection Keys [13, 27, 53, 217, 259] (] Mutual |Full | @ | @ | © | O | Page 8-1024 (13,217 | ™ (special register flip + > )
§ Segmentation-like Hardware (109, 178) O Single |Full | @ | @ | O | O | Byte - Page 178] | 2 (safe/unsafe) | @ (b)
% Enclaves [28, 92 O Mutual | TEE | @ | @ | @ | O | Page oo @ (enclave call, incl. > )
T | TEE [ Confidential VMs [10, 29, 30] O Mutual | TEE | @ | @ | @ | O | Page oo ® (> EPT switch)
World Separation [9, 14] O Single | TEE | @ | @ | @ | O | Page 2 (trusted/rest) | @ (world switch, incl. D)
Hardware Capabilities (57, 78, 180, 236, 244] O Mutval |Full | @ (@ | @ | @ | Byte 00 ® (special instr. +°)
Bounds-Checking Hardware [47, 98, 148, 155, 212] Y Mutual | Full | @°| @°| O | O | Byte o0 @® (bounds hardware + °)
(Other) Tagged Architectures [12, 21, 99, 131, 138, 204, 224, 246] ® Mutual | Full | @°| @°| O | O | Byte - Words® 16" - oo [138] | ® (tagging hardware + )
o Software Capabilities [83, 125) @) Mutual |Full | @ | @ | @ | @ | Byte 00 ® — @ (impl. dep., incl. °)
& | Bounds-Checking Software [225] ® Mutual |Full | @ | @ | © | O | Byte %) @ — @ (impl. dep., incl. D)
2 Safe Languages [50] / Software Verification [154, 163] O Single [Full | @ | @ | ® | @ | Byte 2 (safe/unsafe) | O (function call)
& | Software Fault Isolation (79, 119, 141, 142, 179, 238. 257, 262] @) Single |Full | @ | @ | ® | @ | Byte 'e) & 0C)
Memory Encryption / AES-NI [155] O Mutual |Full | @ (@ | O | O | 128 bits 00 @ (copy key + encrypt + °)

"'In Ring 0. % Not all combinations of R/W/X supported. > Covers many granularities [138].

Some works [113, 173, 190] increase it. ° Register saving/scrubbing, stack switch.
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Names of the mechanisms we consider

Characteristics we included in the taxonomy

N
. - Trust Permissions . Domain Switch Cost
Mechanism Clasﬂ EZZZ,; Model TCB RIW[X]A Granularity Ne of D‘/ (Versus Non-Separated)
Physical Separation [205] ‘\/’ O Mutual | Full | @ | @ | @ | © | Physical Mem. | Ne of madines | ®— @ (link latency)
Access Bits 251, EPT / vmfunc [26] ©' |Mutal | Full | @° @°| @] O | Page 00 @ (PT switch + °)
pr | Supervisor Bit 25, 158, 159] O Single |Full | @°| @°| @°| O | Page 2 (kernel/user) | @ (interrupt + °)
Mondrian Memory Protection (MMP) (249 O Mutual | Full | @°| @°| @°] © | Word 0o ® (MMP hardware + °)
) Protection Keys [13, 27, 53, 217, 259] (] Mutual |Full | @ | @ | © | O | Page 8-1024 (13,217 | ® (special register flip + > )
§ Segmentation-like Hardware [109, 178 O Single |Full | @ | @ [ O | O | Byte - Page [178] | 2 (safe/unsafe) | @ (b )
E Enclaves [28, 92 O Mutual | TEE | @ | @ | @ | O | Page oo @ (enclave call, incl. D)
T | TEE | Confidential VMSs (10, 29, 30] O Mutual | TEE | @ (@ | @ | O | Page oo ® (> EPT switch)
World Separation [9, 14] O Single | TEE | @ | @ | @ | O | Page 2 (trusted/rest) | @ (world switch, incl. D)
Hardware Capabilities (57, 78, 180, 236, 244] O Mutval |Full | @ (@ | @ | @ | Byte 00 ® (special instr. + )
Bounds-Checking Hardware [47, 98, 148, 155, 212] Y Mutual | Full | @°| @°| O | O | Byte 00 ® (bounds hardware + )
(Other) Tagged Architectures [12, 21, 99, 131, 138, 204, 224, 246] o Mutual | Full | @°| @°| O | O | Byte - Words® 16" - oo [138] | ® (tagging hardware + )
_, | Software Capabilities [s3, 125] O |Mutual |Full |@ |@®|@® | @ |Byte oo ® — @ (impl. dep., incl. °)
& | Bounds-Checking Software [225] o Mutual | Full | @ | @ | © | O | Byte [e'e) @ — @ (impl. dep., incl. D)
2 Safe Languages [50] / Software Verification [154, 163] O Single [Full | @ | @ | ® | @ | Byte 2 (safe/unsafe) | O (function call)
& | Software Fault Isolation (79, 119, 141, 142, 179, 238, 257, 262] O Single |Full | @ | @ | @ | ® | Byte 'e) 30
Memory Encryption / AES-NI [155] O Mutual |Full | @ (@ | O | O | 128 bits 00 @ (copy key + encrypt + °)

"'In Ring 0. % Not all combinations of R/W/X supported. > Covers many granularities [138].

Some works [113, 173, 190] increase it. ° Register saving/scrubbing, stack switch.
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Names of the mechanisms we consider

Characteristics we included in the taxonomy

N
. - Trust Permissions . Domain Switch Cost
Mechanism Clasﬂ gzzg; Model TCB RIW[X]A Granularity Ne of D‘l (Versus Non-Separated)
S 4 O Mutual | Full | @ | @ | @ | © | Physical Mem. | Ne of madines | ®— @ (link latency)
©' |Mutal | Full | @° @°| @] O | Page 00 @ (PT switch + °)
pT | Supervisor BIt 2, O Single | Full | @°| @°| @°| O | Page 2 (kernel/user) | @ (interrupt + °)
Mondrian Memory Protectlon (MMP) [249] O Mutual | Full | @°| @°| @°] © | Word 0o ® (MMP hardware + °)
) Protection Keys [13, 27, 53, 217, 259] (] Mutual |Full | @ | @ | © | O | Page 8-1024 (13,217 | ® (special register flip + > )
§ Segmentation-like Hardware [109, 178 O Single |Full | @ | @ [ O | O | Byte - Page [178] | 2 (safe/unsafe) | @ )
E Enclaves [28, 92 O Mutual | TEE | @ | @ | @ | O | Page oo @ (enclave call, incl. D)
T | TEE | Confidential VMSs (10, 29, 30] O Mutual | TEE | @ (@ | @ | O | Page oo ® (> EPT switch)
World Separation [9, 14] O Single | TEE | @ | @ | @ | O | Page 2 (trusted/rest) | @ (world switch, incl. D)
Hardware Capabilities (57, 78, 180, 236, 244] O Mutval |Full | @ (@ | @ | @ | Byte 00 ® (special instr. + )
Bounds-Checking Hardware [47, 98, 148, 155, 212] Y Mutual | Full | @°| @°| O | O | Byte 00 ® (bounds hardware + )
(Other) Tagged Architectures [12, 21, 99, 131, 138, 204, 224, 246] o Mutual | Full | @°| @°| O | O | Byte - Words® 16" - oo [138] | ® (tagging hardware + )
. Software Capabilities [83, 125] @) Mutual |Full | @ | @ | @ | @ | Byte o) ® — @ (impl. dep., incl. °)
& | Bounds-Checking Software [225] o Mutual | Full | @ | @ | © | O | Byte [e'e) @ — @ (impl. dep., incl. D)
2 Safe Languages [50] / Software Verification [154, 163] O Single [Full | @ | @ | ® | @ | Byte 2 (safe/unsafe) | O (function call)
& | Software Fault Isolation (79, 119, 141, 142, 179, 238, 257, 262] O Single |Full | @ | @ | @ | ® | Byte 00 30
Memory Encryption / AES-NI [155] O Mutual |Full | @ (@ | O | O | 128 bits 00 @ (copy key + encrypt + °)

"'In Ring 0. % Not all combinations of R/W/X supported. > Covers many granularities [138].

Some works [113, 173, 190] increase it. >

Register saving/scrubbing, stack switch.
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Again, a few interesting aspects (£
s i ot o |70 FTR ] oy [ orpoma | e e
Physical Separation [205] O Mutual | Full | @ | @ | @ | O | Physical Mem. Ne of machines | @ — @ (link latency)
Access Bits (251, EPT / vmfunc [26] ©' |Mutal | Full | @° @°| @] O | Page 00 @ (PT switch + °)
pr | Supervisor Bit 25, 158, 159] O Single |Full | @°| @°| @°| O | Page 2 (kernel/user) | @ (interrupt + °)
Mondrian Memory Protection (MMP) [249] O Mutual | Full | @°| @° @°] O | Word %) @ (MMP hardware + 3)
) Protection Keys [13, 27, 53, 217, 259] (] Mutual |Full | @ | @ | © | O | Page 8-1024 (13,217 | ™ (special register flip + > )
§ Segmentation-like Hardware (109, 178) O Single |Full | @ | @ | O | O | Byte - Page 178] | 2 (safe/unsafe) | @ (b)
% Enclaves [28, 92 O Mutual | TEE | @ | @ | @ | O | Page oo @ (enclave call, incl. > )
T | TEE [ Confidential VMs [10, 29, 30] O Mutual | TEE | @ | @ | @ | O | Page oo ® (> EPT switch)
World Separation [9, 14] O Single | TEE | @ | @ | @ | O | Page 2 (trusted/rest) | @ (world switch, incl. D)
Hardware Capabilities (57, 78, 180, 236, 244] O Mutval |Full | @ | @ | ® | @ | Byte 00 ® (special instr. +°)
Bounds-Checking Hardware [47, 98, 148, 155, 212] Y Mutual | Full | @°| @°| O | O | Byte o0 @® (bounds hardware + °)
(Other) Tagged Architectures [12, 21, 99, 131, 138, 204, 224, 246] ® Mutual | Full | @°| @°| O | O | Byte - Words® 16" - oo [138] | ® (tagging hardware + )
o Software Capabilities [83, 125) @) Mutual |Full | @ | @ | @ | @ | Byte 00 ® — @ (impl. dep., incl. °)
& | Bounds-Checking Software [225] ® Mutual |Full | @ | @ | © | O | Byte %) @ — @ (impl. dep., incl. D)
2 Safe Languages [50] / Software Verification [154, 163] O Single [Full | @ | @ | ® | @ | Byte 2 (safe/unsafe) | O (function call)
& | Software Fault Isolation (79, 119, 141, 142, 179, 238. 257, 262] @) Single |Full | @ | @ | ® | @ | Byte 'e) & 0C)
Memory Encryption / AES-NI [155] O Mutual |Full | @ (@ | O | O | 128 bits 00 @ (copy key + encrypt + °)

"'In Ring 0. % Not all combinations of R/W/X supported. > Covers many granularities [138].

Some works [113, 173, 190] increase it. ° Register saving/scrubbing, stack switch.
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Hardware and software are both popular research areas

s i ot L [ 100 EREEE] i [ | e e o
Physical Separation [205] O Mutual | Full | @ | @ | @ | O | Physical Mem. Ne of machines | @ — @ (link latency)
Access Bits (251, EPT / vmfunc [26] ©' |Mutal | Full | @° @°| @] O | Page 00 @ (PT switch + °)
I ntel pr | Supervisor Bit 25, 158, 159] O Single |Full | @°| @°| @°| O | Page 2 (kernel/user) | @ (interrupt + °)
\& Mondrian Memory Protection (MMP) [249] O Mutual | Full | @°| @° @°] O | Word %) @ (MMP hardware + 3)
M P K Protection Keys [13, 27, 53, 217, 259] (] Mutual |Full | @ | @ | © | O | Page 8-1024 (13,217 | ™ (special register flip + > )
2 | Segmentation-like Hardware [109, 178] O Single |Full | @ | @ | O | O | Byte - Page 178] | 2 (safe/unsafe) | @ (b)
E Enclaves [28, 92 O Mutual | TEE | @ | @ | @ | O | Page oo @ (enclave call, incl. > )
TEE | Confidential VMs [10, 29, 30] O Mutual | TEE | @ | @ | @ | O | Page 00 ® (> EPT switch)
C H E RI g World Separation [9, 14] O Single |TEE | @ | @ | @ | O | Page 2 (trusted/rest) | @ (world switch, incl. °)
Hardware Capabilities (57, 78, 180, 236, 244] O Mutval |Full | @ | @ | ® | @ | Byte 00 ® (special instr. +°)
Bounds-Checking Hardware [47, 98, 148, 155, 212] Y Mutual | Full | @°| @°| O | O | Byte o0 @® (bounds hardware + °)
(Other) Tagged Architectures [12, 21, 99, 131, 138, 204, 224, 246] ® Mutual | Full | @°| @°| O | O | Byte - Words® 16" - oo [138] | ® (tagging hardware + )
. Software Capabilities [83, 125) @) Mutual |Full | @ | @ | @ | @ | Byte 00 ® — @ (impl. dep., incl. °)
& | Bounds-Checking Software [225] ® Mutual |Full | @ | @ | © | O | Byte %) @ — @ (impl. dep., incl. D)
2 Safe Languages [50] / Software Verification [154, 163] O Single [Full | @ | @ | ® | @ | Byte 2 (safe/unsafe) | O (function call)
& | Software Fault Isolation (79, 119, 141, 142, 179, 238. 257, 262] @) Single |Full | @ | @ | ® | @ | Byte 'e) & 0C)
Memoryy ption / AES-NI [155] O Mutual |Full | @ | @ | O | O | 128 bits 00 @ (copy key + encrypt + °)

T'In Ring O</\ 1l combinations of R/W/X supported. > Covers many granularities [138]. © Some works [113, 173, 190] increase it. 5 Register saving/scrubbing, stack switch.

WebAssembly
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A lot of interest in enforcing memory isolation at a byte granularity (vs. a page)

s i ot Lo |10 FTR ] oy [ orpoma | e
Physical Separation [205] O Mutual | Full | @ | @ | @ | O | Physical Mem. Ne of machines | @ — @ (link latency)
Access Bits (251, EPT / vmfunc [26] ©' |Mutal | Full | @° @°| @] O | Page 00 @ (PT switch + °)
pr | Supervisor Bit 25, 158, 159] O Single |Full | @°| @°| @°| O | Page 2 (kernel/user) | @ (interrupt + °)
Mondrian Memory Protection (MMP) [249] O Mutual | Full | @°| @° @°] O | Word %) @ (MMP hardware + 3)
) Protection Keys [13, 27, 53, 217, 259] (] Mutual |Full | @ | @ | © | O | Page 8-1024 (13,217 | ™ (special register flip + > )
§ Segmentation-like Hardware (109, 178) O Single |Full | @ | @ | O | O | Byte - Page [178] | 2 (safe/unsafe) | @ (b)
E Enclaves [28, 92 O Mutual | TEE | @ | @ | @ | O | Page oo @ (enclave call, incl. > )
T | TEE [ Confidential VMs [10, 29, 30] O Mutual | TEE | @ | @ | @ | O | Page oo ® (> EPT switch)
World Separation [9, 14] O Single | TEE | @ | @ | @ | O | Page 2 (trusted/rest) | @ (world switch, incl. D)
Hardware Capabilities (57, 78, 180, 236, 244] O Mutval |Full | @ (@ | @ | @ | Byte 00 ® (special instr. +°)
Bounds-Checking Hardware [47, 98, 148, 155, 212] Y Mutual | Full | @°| @°| O | O | Byte o0 @® (bounds hardware + °)
(Other) Tagged Architectures [12, 21, 99, 131, 138, 204, 224, 246] ® Mutual | Full | @°| @°| O | O | Byte - Words® 16" - oo [138] | ® (tagging hardware + )
o Software Capabilities [83, 125) @) Mutual |Full | @ | @ | @ | @ | Byte 00 ® — @ (impl. dep., incl. °)
& | Bounds-Checking Software [225] ® Mutual |Full | @ | @ | © | O | Byte %) @ — @ (impl. dep., incl. D)
2 Safe Languages [50] / Software Verification [154, 163] O Single [Full | @ | @ | ® | @ | Byte 2 (safe/unsafe) | O (function call)
& | Software Fault Isolation (79, 119, 141, 142, 179, 238. 257, 262] @) Single |Full | @ | @ | @® | @ | Byte 'e) & 0C)
Memory Encryption / AES-NI [155] O Mutual |Full | @ | @ | O | O | 128 bits o0 @ (copy key + encrypt + °)
z

"'In Ring 0. % Not all combinations of R/W/X supported. > Covers many granularities [138].

V

D

ry widely varying — 128 bits!

rubbing, stack switch.
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s i ot o |10 F TR ] oty [ orpoma | e
Physical Separation [205] O Mutual | Full | @ | @ | @ | O | Physical Mem. Ne of machines | @ — @ (link latency)
Access Bits (251, EPT / vmfunc [26] ©' |Mutal | Full | @° @°| @] O | Page 00 @ (PT switch + °)
pr | Supervisor Bit 25, 158, 159] O Single |Full | @°| @°| @°| O | Page 2 (kernel/user) | @ (interrupt + °)
Mondrian Memory Protection (MMP) [249] O Mutual | Full | @°| @° @°] O | Word %) @ (MMP hardware + 3)
) Protection Keys [13, 27, 53, 217, 259] (] Mutual |Full | @ | @ | © | O | Page 8-1024 (13,217 | ® (special register flip + > )
§ Segmentation-like Hardware (109, 178) O Single |Full | @ | @ | O | O | Byte - Page 178] | 2 (safe/unsafe) | @ (b)
% Enclaves [28, 92 O Mutual | TEE | @ | @ | @ | O | Page oo @ (enclave call, incl. > )
T | TEE | Confidential VMSs (10, 29, 30] O Mutual | TEE | @ | @ | @ | O | Page 00 ® (> EPT switch)
World Separation [9, 14] O Single | TEE | @ | @ | @ | O | Page 2 (trusted/rest) | @ (world switch, incl. D)
Hardware Capabilities (57, 78, 180, 236, 244] O Mutval |Full | @ | @ | ® | @ | Byte 00 ® (special instr. + )
Bounds-Checking Hardware [47, 98, 148, 155, 212] Y Mutual | Full | @°| @°| O | O | Byte o0 @® (bounds hardware + °)
(Other) Tagged Architectures [12, 21, 99, 131, 138, 204, 224, 246] ® Mutual | Full | @°| @°| O | O | Byte - Words® 16" - oo [138] | ® (tagging hardware + )
o Software Capabilities [83, 125) @) Mutual |Full | @ | @ | @ | @ | Byte 00 ® — @ (impl. dep., incl. °)
& | Bounds-Checking Software [225] ® Mutual |Full | @ | @ | © | O | Byte %) @ — @ (impl. dep., incl. D)
2 Safe Languages [50] / Software Verification [154, 163] @) Single [Full | @ | @ | ® | @ | Byte 2 (safe/unsafe) | O (function call)
& | Software Fault Isolation (79, 119, 141, 142, 179, 238. 257, 262] @) Single |Full | @ | @ | ® | @ | Byte 'e) 30
Memory Encryption / AES-NI [155] O Mutual |Full | @ (@ | O | O | 128 bits 00 @ (copy key + encrypt + °)

"'In Ring 0. % Not all combinations of R/W/X supported. > Covers many granularities [138].

Some works [113, 173, 190] increase it. ° Register saving/scrubbing, stack switch.

Nearly all works aim at cutting the cost of domain switches
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(1) Watson et al., CHERI: A Hybrid Capability-System Architecture for Scalable Software Compartmentalization, S&P 2015
(2) Amar et al., CHERIoT RTOS: An OS for Fine-Grained Memory-Safe Compartments on Low-Cost Embedded Devices, SOSP 2025

Pick one influential example from the literature: CHERI'Y®?

) . - Condi- Trust Permissions . , . Domain Switch Cost
Mechanism Class vioned | Model TCB RIW[X]A Granularity Ne of Domains (Versus Non-Separated)
(]
s
2
=
<
an
Hardware Capabilities [57, 78, 180, 236, 244] | O [Mutual |[Ful (@ |@|@®|@®]|Byte 00 | @ (special instr. +°)
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(1) Watson et al., CHERI: A Hybrid Capability-System Architecture for Scalable Software Compartmentalization, S&P 2015
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(1) Watson et al., CHERI: A Hybrid Capability-System Architecture for Scalable Software Compartmentalization, S&P 2015
(2) Amar et al., CHERIoT RTOS: An OS for Fine-Grained Memory-Safe Compartments on Low-Cost Embedded Devices, SOSP 2025
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(1) Watson et al., CHERI: A Hybrid Capability-System Architecture for Scalable Software Compartmentalization, S&P 2015
(2) Amar et al., CHERIoT RTOS: An OS for Fine-Grained Memory-Safe Compartments on Low-Cost Embedded Devices, SOSP 2025

Pick one influential example from the literature: CHERI'Y®?

Condi- Trust Permissions Domain Switch Cost

TCB Granularity Ne of Domains (Versus Non-Separated)

Mechanism Class tioned | Model RIW[X]A

[ Hardware mechanism that ]

comes as an ISA extension

CHERI extends pointers with

bounds and permission It comes with a very low
information. It is very expressive! domain-switching overhead.

L

Hardware Capabilities [57, 78, 180, 236, 244] | O [Mutual |[Ful @ @ |®|@®|Byte | 00 | @ (special instr. +°) |

Hardware

It can be used to enforce
isolation at a byte granularity,
as opposed to entire pages




Open Problem in Enforcement Mechanisms

Mechanisms must fulfill several properties to be suitable to enforce
compartmentalization (we formalize them in the Sok)
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Mechanisms must fulfill several properties to be suitable to enforce
compartmentalization (we formalize them in the Sok)

Some (popular!) mechanisms do not fulfill all these properties

We call them conditic@
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Open Problem in Enforcement Mechanisms

Mechanisms must fulfill several properties to be suitable to enforce
compartmentalization (we formalize them in the Sok)

Some (popular!) mechanisms do not fulfill all these properties

We call them conditic@

Condi-
tioned

‘ ‘ Mechanism Class

Physical Separation [205]

I n te I Access Bits [25], EPT / vmfunc [26] O

Supervisor Bit [25, 158, 159]

ondrian Memory Protection (MMP) [249] @)
IVI P K )‘Otection Keys [13, 27, 53, 217, 259] [ }
Mntation—like Hardware [109, 178] ¢

.

Hardwarl\

Enclaves [28, 92] O
TEE | Confidential VMs [10, 29, 30] O
World Separation [9, 14]
Hardware Capabilities [57, 78, 180, 236, 244] O

Bounds-Checking Hardware (47, 98, 148, 155, 212]
(Other) Tagged Architectures [12, 21, 99, 131, 138, 204, 224, 246]

Software Capabilities (83, 125]
Bounds-Checking Software [225) o
Safe Languages [50] / Software Verification [154, 163]
Software Fault Isolation (79, 119, 141, 142, 179, 238, 257, 262]
Memory Encryption / AES-NI [155]

Software
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Open Problem in Enforcement Mechanisms

Mechanisms must fulfill several properties to be suitable to enforce

compartmentalization (we formalize them in the Sok)
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Some (popular!) mechanisms do not fulfill all these properties
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(Other) Tagged Architectures [12, 21, 99, 131, 138, 204, 224, 246] (]
Software Capabilities (83, 125] (
Bounds-Checking Software [225) o

Software

Safe Languages [50] / Software Verification [154,

163]

0O
O

Software Fault Isolation (79, 119, 141, 142, 179, 238,

257, 262)

Memor y Encryption / AES-NI [155]




Open Problem in Enforcement Mechanisms

Mechanisms must fulfill several properties to be suitable to enforce
compartmentalization (we formalize them in the Sok)

Some (popular!) mechanisms do not fulfill all these properties
@:hem conditic@

-

| ‘Physica] — Access permissions are stored ]
Intel xesul  in an unprotected regisy”

[ ondrian M A Skews performance and
IVI P K > V)‘ot‘ectio‘n Keys [13, 27, 53,217, 259] . . .

2 [RoeMnation ke Hardvare o security comparisons

T | TEE [ Confidential

woid Serd | structions that can modify this

Hardware Capabilit
Bounds-Checking H

onen Taezed A F€Gister must be protected, but this

Software Capabilitid .

BoundsChecking 5| COMES at @ cost and is often neglected
Safe Languages [50]

Software Fault Isolation (79, 119, 141, 142, 179, 238, 257, 262] O
Memory Encryption / AES-NI [155]

Software




Open Problem in Enforcement Mechanisms

Mechanisms must fulfill several properties to be suitable to enforce
compartmentalization (we formalize them in the Sok)

Some (popular!) mechanisms do not fulfill all these properties
| ( @:hem conditic@

Access permissions are stored ]

Physical Separatio

Intel xesul  in an unprotected regisy”

MPK [ o 2 A Skews performance and
= fotection Keys [13, 27, 53,217, 259] ® N .
é%g;gggiﬁ;i:ﬂwm L. 179 — security comparisons
E TEE ConﬁdentialA 3 . = . X

woid Serd | structions that can modify this

Hardware Capabilit
o e register must be protected, but this

Software Capabilitid

BoundsChecking 5| COMES at @ cost and is often neglected

Safe Languages [50]
Software Fault Isolation (79, 119, 141, 142, 179, 238, 257, 262]
Memory Encryption / AES-NI [155]

Software

How to fairly evaluate the security and performance
characteristics of isolation mechanisms?



My promise for this talk

A journey through twenty years of
compartmentalization

3. The why: compartmentalization everywhere, what will it take? \I/\l

What are the remaining obstacles? Where to go from there?



Potential obstacle #1: Lack of awareness?
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Potential obstacle #2: Performance? Footcplee0

HTTP -1 PFastCGI
Parser Module

Compartmentalization has an impact on performance
e Crossing protection domains or IPC is not free (among others)

* This cost varies based on where crossings are in the control flow
This makes compartmentalization more complex and limits the
extent to which one can compartmentalize

Open Problem in Policy Definition Methods

Critical stance: in most cases, this is not a problem.
e The community is overly focused on performance
* The costis reasonable in most cases if the
compartmentalization is done correctly [
* In fact, many performance-sensitive programs are
compartmentalized! Yes, but...

Remember our policy
definition challenge...
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,,,,,,,,,,,,,,

rar
___________

This is still the most common way to do it today.




Potential obstacle #3: Complexity!

The historical approach to compartmentalizing software is too complex.

Going back to our example:

Implementing them with
Determining boundaries L low-level process APIs

————

~——
Problem #2

Policy Definition Methods How to implement policies?

Historically, people have done this manually. Having defined a policy, we need to express it in the program.

Example: we want to split this C program. Developers perform this using programming abstractions.

Historically, people have done this with processes (=the process abstraction).

A developer looks attentively at the program...

i HTTP | | FastCGI | f;ﬁ- ------------ Example: assume we sandbox the HTTP parser.
N I T T —— - HTTP F I
! parser | ! Module | I donot trust this | HTTP | HTTP " parser | | Module |
'l parser | | | | eI=2T0 2o TCo
ST T component” :_ Parser |~ ibox LFarser 1 fork() SetupIPC.. chroot()

e .. | TssL : HTTP HTTP
T . 1
Lo e ' "l particularly value |~ ssL | SSL Cldbrary | LTt ] | parser | Parser
Library
safebox

; L e B I e e ettt (e i
(Fictive monalithic program) this component” Library |

{Fictive monalithic program) setuid() seccomp()

This is still the most common way to do it today. This is still the most common way to do it today.
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The historical approach to compartmentalizing software is too complex.

Going back to our examp

Determining boundaries

e.

Implementing them with
low-level process APIs

Securing them with
ad-hoc audits

————

Policy Definition Methods

Historically, people have done this manually.

Example: we want to split this C program.

A developer looks attentively at the program...

{ WrP 0 Fastcsri |
! Parser | ! Module | "I do not trust this | HTTP |
P [ component” L Parser | o LParser
i SSLI i ]
! Library | ! 1 fmmm s

""""" "I particularly value | ssL i

' ] — ..

(Fictive monalithic program) this component” | Ubrary | epox LLibrary

This is still the most common way to do it today.

N
Problem #2

How to implement policies?

Having defined a policy, we need to express it in the program.
Developers perform this using programming abstractions.

Historically, people have done this with processes (=the process abstraction).

!;3. s memer Example: assume we sandbox the HTTP parser.

1 I 1
LEafﬁef,l Ltm,d‘il,e,l fork() SetuplIPC... chroot()

i ) i D L
1 SsL L] : ‘r HTTP 1 HTTP

. 1 000 -
L\.}Erfﬁ[yf, 'L 77777 1 ‘_Parser : Parser

{Fictive monalithic program) setuid() seccomp()

This is still the most common way to do it today.
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Open Problem in Compartmentalization
Abstral

Hardening rsis key to obtaining ., ¢, )
strong sec npartmentalization fastegi_do(oxdeadbeef)
Example: ¢ plemented our

boundarie led to R FastCGI |
communic 1ck surface. :

Most abstractions consider the hardening of
compartment interfaces an orthogonal problem.

We stress that abstractions can and should w
facilitate the hardening of compartment interfaces.

How can abstractions that facilitate the
implementation of secure domain interfaces?
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The historical approach to compartmentalizing software is too complex.

Going back to our examp

e.

Determining boundaries

Implementing them with
low-level process APIs

————

Policy Definition Methods

Historically, people have done this manually.
Example: we want to split this C program.

A developer looks attentively at the program...

{ WrP 0 Fastcsri |
! Parser | ! Module | "I do not trust this | HTTP |
P [ component” L Parser | o LParser
i SSLI i ]
! Library | ! 1 fmmm s

""""" "I particularly value | ssL i

' ] — ..

(Fictive monalithic program) this component” | Ubrary | epox LLibrary

This is still the most common way to do it today.

Securing them with
ad-hoc audits

N
Problem #2

How to implement policies?
Having defined a policy, we need to express it in the program.
Developers perform this using programming abstractions.

Historically, people have done this with processes (=the process abstraction).

!;ﬁ_ _____ [ — Example: assume we sandbox the HTTP parser.
HTTP 1 FastCGI |
|
LEafﬁef, 'L @o,d‘il,e,l fork() SetupIPC... chroot()
| ssL i i BT I T
' Library | 0T 7: | Parser : Parser
(Fictive monolithic program) setuid() seccomp()

This is still the most common way to do it today.

Vﬁa\.. Assessing the Impact of Interface i in Comp: lized Software, NDSS'23
Open Problem in Compartmentalization
Abstral

Hardening 's is key to ot_)tau.nmg factess ,
strong sec npartmentalization fastegs_do(oxdeadbect)
Example: ¢ plemented our

boundarie led to R FastCGI |
communic 1ck surface, :

Most abstractions consider the hardening of
compartment interfaces an orthogonal problem.

We stress that abstractions can and should w
facilitate the hardening of compartment interfaces.

How can abstractions that facilitate the
implementation of secure domain interfaces?

This approach is ad-hoc, costly in developer time,
and requires a lot of expertise.
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Potential obstacle #3: Complexity!

The historical approach to compartmentalizing software is too complex.

Worse yet, it considers compartmentalization Process Process
. . \

as a one-off operation, which it isn't. \ M
Hi FastCGI

Consider debugging: ParSer Module

* There will be bugs to fix. - g |

. . oy,

* Bugs now occur across security boundaries. Library | | *°°

* This impacts the debugging experience but \
Process Process

the debugging ecosystem is not there.
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Potential obstacle #3: Complexity!

The historical approach to compartmentalizing software is too complex.

Worse yet, it considers compartmentalization

as a one-off operation, which it isn't.
Consider maintenance! P';EZP FMaosdtucheI
* Developers will need to maintain the
partitioned program. Liiﬁgry
 Over time, the partitioning strategy may //\;,\6‘?

need to change.
WSession KEEE @
the SSL
Keys Lib




. [ J
[ ] (1) Lefeuvra et al, Assessing the Impact of Intarface Vulnerabilities in Compartmentalized Software, NDSS'23
Potential obstacle #3: Complexity! ..o iommmm

Abstral e
Hardening 3s is key to obtaining fastegs_ D
strong sec npartmentalization fasteqt_do(oxdeadbeet)
. . . . Examplei i i "lp\emented our
The historical approach to compartmentalizing soft\ = [ .
ost abstracti e hardening o

We stress that abstractions can and should
facilitate the hardening of compartment interfaces.

Worse yet, it considers compartmentalization "

as a one-off operation, which it isn't.
Consider maintenance! P';EZP FMaosdtucheI
 Developers will need to maintain the
partitioned program. Lizﬁgry
* QOver time, the partitioning strategy may A -
need to change. / \
e Again, there is historically no tooling to SeKSeSyi:” iﬁgigf

handle that safely and avoid regressions.
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Potential obstacle #4: The lackofa Vo B
systematic approach?

The historical approach to compartmentalization does not scale:

e Historically, compartmentalization is deeply custom to each program
Compartmentalize program A, then start all over again with B

Can we make compartmentalization efforts reusable?

 Can we compartmentalize component C, and reuse that
component compartmentalized everywhere?

 Analogy to the "software crisis" from the 1960s:

o The answer to "we are not producing enough software" is to
build software from reusable componentsw

(1) nttps://www.cs.dartmouth.edu/~doug/components.txt
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't is the right time to push
compartmentalization everywhere  of#=

* More than ever we need more secure software

CYBER THREAT
OVERVIEW
2023

The level of cyber threat keeps on increasing (...).
Today, ANSSI assesses that attackers linked to
China, Russia and cybercrime pose the greatest
threat to the most critical networks and to the
French ecosystem in a systemic way.

*emphasis mine

(1) https://www.cert.ssi.gouv.fr/uploads/CERTFR-2024-CTI-002.pdf 202



't is the right time to push
compartmentalization everywhere o[z

e More than ever we need more secure software
« Compartmentalization absolutely fits the needs

CYBER THREAT
OVERVIEW
2023

= (2) The level of cyber threat keeps on increasing (...).
Tedlan—AbCClasqnsses that attackers linked to
:,, Secure Hardware Foundation: Incorporate cybercrime pose the greatest
G' architectural features that enable fine- st critical networks and to the
59 grained memory protection, such as those in a systemic way.

described by Capability Hardware Enhanced
RISC Instructions (CHERI)

*emphasis mine

Co-signed by, among
others, UK, NL, DE, NO

(2) https://www.cisa.gov/sites/default/files/2023-10/SecureByDesign_1025 508c.pdf
(1) https://www.cert.ssi.gouv.fr/uploads/CERTFR-2024-CTI-002.pdf 203
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* The challenges to push compartmentalization at

scale are not new:
o Research has explored them in many ways
and come up with solutions that work

(second part of this talk!)

My promise for this talk

A journey through twenty years of
compartmentalization

4. . zation? (sl
2. A systematic perspective on compartmentalization fs

3. The why: compartmentalization everywhere, what will it take?

Take a step back: How do practitioners compartmentalize?
What does research say? What are open challenges?

(1) Lefeuvre et al., SoK: Software Compartmentalization, S&P 2025



't is the right time to push
compartmentalization everywhere

. (1)
* The challenges to push compartmentalization at

scale are not new:
o Research has explored them in many ways
and come up with solutions that work
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The missing frameworks are emerging

Take RLBox, discussed earlier in the talk me—
* Productized in Firefox for library isolation
e You can use it: https://github.com/PLSysSec/rlbox

(1) Narayan et al., Retrofitting Fine Grain Isolation
in the Firefox Render, USENIX Security 2020
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Take RLBox, discussed earlier in the talk
* Productized in Firefox for library isolation
* YOoU can use it: https://github.com/PLSysSec/rlbox

Recently: increasing interest in coming together to
create industry standards for compartmentalization
* The Open Robust Compartmentalization Alliance
was just accepted as Linux Foundation
project: nttps://github.com/ORCA-LF/governance
 Aiming to foster the adoption and standardization

of compartmentalization practices Join us! Still in early stage, you
can send me a message. 209

(1) Narayan et al., Retrofitting Fine Grain Isolation
in the Firefox Render, USENIX Security 2020
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The hardware ecosystem is emerging

Take CHERI, discussed earlier as well.

(1) Watson e
(2) Amar ot al, CHER)

 CHERL: A Hybrid Capability-Syster
RTOS: An OS for Fine-Grained Memory-Safe Compartments on Low-Cost Embedd

Architecture for Scalable Software Compartm

Pick one influential example from the literature: CHERI "™

Hardware mechanism that
comes as an ISA extension

CHERI extends pointers with
bounds and permission

Itis very exp

jon, S&P 2015
SOSP 2025

hing overhead.

It can be used to enforce
isolation at a byte granularity,
as opposed to entire pages
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The hardware ecosystem is emerging

Take CHERI, discussed earlier as well.

It is not a research prototype. You can use it

ARM Morello Prototype
Board (2020)

ICENI Family 250

ICENI Family (CHERIoT): CHERI for
the embedded world (2025)

Pick one influential example from the literature: CHERI'

Hardware mechanism that

CHERI extends pointers with
bounds and permission

1t comes with a very low
hing overhead

HUART. Pl
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SmEC “fimer use
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NVM Memory A -

(128K8 -2M8 )

PWM
ADC
DAC

Optional Security Subsystem

[Codasip X730 (2024)]
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(2) Amar et al, CHERIOT RTOS: An OS for Fine-Grained Memary. Safe Compartments on Law-Cost Embedded Devices, SOSP 2025
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I ( : I I | R I Pick one influential example from the literature: CHERI'"
Hardware mechanism that

It is not a research prototype. You can use it!

| ICENI Family (CHERIoT): CHERI for
the embedded world (2025)

PWM

soixs

aaaaaa

ARM Morello Prototype
Board (2020)

Recently: creation of the CHERI Alliance to support
industry standards and foster adoption
 Join the CHERI Alliance! https://cheri-alliance.org/

[Codasip X730 (2024)]
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Software compartmentalization
everywhere: what will it take?



Open Problem in Enforcement Mechanisms
Mechanisms must fulfill several properties to be suitable to enforce

Some (popular!) mechanisms do not fulfill allthese properties

1:';.‘:‘ _ Open Problem in Compartmentalization
i

Yes, there are many interesting research challenges left.

But for the better part, it is about transitioning two decades of
research into the industry and open-source communities

1. An effort on industry-grade compartmentalization frameworks
to lower the bar to compartmentalize software

2. An effort on using these frameworks to compartmentalize
vulnerable components in a re-usable fashion: can we do this
under the umbrella of Linux distributions?

3. Supporting the push towards emerging security-oriented
hardware: integrate CHERI in your hardware products!
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Key Takeaways

1. Compartmentalization is a key practice to improve the
trustworthiness of software

2. Compartmentalization, in its historical form, is hindered by its
complexity

3. Wellive at a golden age to solve this problem. A call to the
community: we can make software more trustworthy!

Questions? Reach out: hugo.lefeuvre@ubc.ca
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