C
@)

)}

THE UNIVERSITY C&ESAR 2025, November 19, 2025
OF BRITISH COLUMBIA

Software Compartmentalization
Everywhere - What Will it Take?

Hugo Lefeuvre

Postdoctoral Research Fellow
University of British Columbia
Vancouver (I+J)

Historically, program = unit of trust

Historically, program = unit of trust

Process

libcrypto

In-house

C library

libjpeg

Rust module

Component

External
component

Operating System Kernel

Example: fictive application

«—— Unit of isolation

Historically, program = unit of trust

Process % Example: fictive application
C library 1 g

«—— Unit of isolation

libcrypto Rust module
J‘ Attacker exploits bug in
In-house External one of the libraries
Component component

Operating System Kernel

Historically, program = unit of trust

Process Clibrar% . l%g

%Lbcrypto Wu le

Ext |

Component component

Operating System Kernel

Example: fictive application

«—— Unit of isolation

J‘ Attacker exploits bug in
one of the libraries

Spreads trivially because
of ambient trust

Historically, program = unit of trust

Example: fictive application
Process C”brar% l%g P pp

E\V;% l «— Unit of isolation
ibcrypto st module
Attacker exploits bug in

Extertial one of the libraries
Component component

Spreads trivially because
of ambient trust

Operating System Kernel

This historical approach is
increasingly problematic

Among others...

Historically, program = unit of trust Modern programs are

deeply heterogeneous

Process C library libjpeg

libcrypto Rust module

In-house External
Component component

Operating System Kernel

This historical approach is
increasingly problematic

Among others...

Historically, program = unit of trust Modern programs are

deeply heterogeneous
Process . o
C library libjpeg
libcrypto Rust module
TR 1 Different origins...
In-house | External I
Component I _cgm_po_n@t_ |
Operating System Kernel

This historical approach is
increasingly problematic

Among others...

Historically, program = unit of trust Modern programs are

deeply heterogeneous

Process C library libjpeg Dufferent_
programming

libcrypto Rust module languages...
== == == 1 Different origins...
In-house | External I
Component | component

Operating System Kernel

This historical approach is
increasingly problematic

Among others...

Historically, program = unit of trust Modern programs are

deeply heterogeneous

Process C library libjpeg Dufferent_
programming

libcrypto Rust module languages...
p— . Different origins... Different degrees of risk...
In-house | External I
Component | component

Operating System Kernel

This historical approach is
increasingly problematic

Among others...

Historically, program = unit of trust Modern programs are

deeply heterogeneous

Process Different

Clibrary libjpeg)
programming
More or less valuable data...

libcrypto Rust module languages...
p— . Different origins... Different degrees of risk...
In-house | External I
Component | component

Operating System Kernel

This historical approach is
increasingly problematic

Among others...

Historically, program = unit of trust Modern programs are

deeply heterogeneous

Process Different

Clibrary libjpeg _
programming
More or less valuable data...

libcrypto Rust module languages...
p— . Different origins... Different degrees of risk...
In-house | External I
Component ; component |

4 (1)

Operating System Kernel

| 180 open-source components —
DE that’s an increase from around 150
from which we found last year.

This historical approach is
increasingly problematic

<
(1) 10th Annual State of the Software Supply Chain, Sonatype Inc. EIsonatyl

& SIGN INJUP Theﬂnegis‘tel"" = = (1)

cso How did a CrowdStrike file crash millions of
Windows computers? We take a closer look at
the code

nsa Maybe next time some staged rollouts? A bit of QA too?

$ X f in @ ANALYSIS Last week, at 0409 UTC on July 19, 2024, antivirus maker CrowdStrike
released an update to its widely used Falcon platform that caused Microsoft Windows
machines around the world to crash.

The impact was extensive. Supply chain firm Interos estimates 674,620 direct enterprise
customer relationships of CrowdStrike and Microsoft were affected. Microsoft said 8.5
million Windows machines failed. The results beyond a massive amount of IT
remediation time included global flight and shipping delays due to widespread Windows
system failures.

lllustration of this problem:
Last year's Crowdstrike disaster where a bug in an
external antivirus plug-in crashes millions of computers

(1) https://www.theregister.com/2024/07/23/crowdstrike_failure_shows_need_for/

& SIGN INJUP Theﬂ-neﬁﬂel"" = = (1)

cso How did a CrowdStrike file crash millions of
Windows computers? We take a closer look at
the code

nsa Maybe next time some staged rollouts? A bit of QA too?

$ X f in @ ANALYSIS Last week, at 0409 UTC on July 19, 2024, antivirus maker CrowdStrike
released an update to its widely used Falcon platform that caused Microsoft Windows
machines around the world to crash.

The impact was extensive. Supply chain firm Interos estimates 674,620 direct enterprise
customer relationships of CrowdStrike and Microsoft were affected. Microsoft said 8.5

million Windows machines failed. The results beyond a massive amount of IT
remediation time included global flight and shipping delays due to widespread Windows

et e (”Just a crash": what if it had

wsu/pply-chain attack?
lllustration of this problem:

Last year's Crowdstrike disaster where a bug in an
external antivirus plug-in crashes millions of computers

(1) https://www.theregister.com/2024/07/23/crowdstrike_failure_shows_need_for/

& SIGN INJUP Theﬂ-neﬁﬂel"" = = (1)

cso How did a CrowdStrike file crash millions of
Windows computers? We take a closer look at
the code

nsa Maybe next time some staged rollouts? A bit of QA too?

$ X f in @ ANALYSIS Last week, at 0409 UTC on July 19, 2024, antivirus maker CrowdStrike
released an update to its widely used Falcon platform that caused Microsoft Windows
machines around the world to crash.

The impact was extensive. Supply chain firm Interos estimates 674,620 direct enterprise
customer relationships of CrowdStrike and Microsoft were affected. Microsoft said 8.5

million Windows machines failed. The results beyond a massive amount of IT
remediation time included global flight and shipping delays due to widespread Windows

et e (”Just a crash": what if it had

wsu/pply-chain attack?
lllustration of this problem:

Last year's Crowdstrike disaster where a bug in an
external antivirus plug-in crashes millions of computers

rogram = single unit of trust

(1) https://www.theregister.com/2024/07/23/crowdstrike_failure_shows_need_for/

Compartmentalization

Compartmentalization

Software compartmentalization =

* design programs split into distrusting and isolated components
e such that if one of the components is breached, the attacker does
not compromise the whole program

Compartmentalization

Software compartmentalization =

* design programs split into distrusting and isolated components
e such that if one of the components is breached, the attacker does
not compromise the whole program

HTT% FastCGI
Parser Module

SSL
Library

Monolithic

Example: a web server (Apache)

Compartmentalization

Software compartmentalization =

* design programs split into distrusting and isolated components
e such that if one of the components is breached, the attacker does
not compromise the whole program

HTT% FastCGI
Parser Module
XDirect access

SSL

Libra

Monolithic

Example: a web server (Apache)

Compartmentalization

Software compartmentalization =

* design programs split into distrusting and isolated components
e such that if one of the components is breached, the attacker does
not compromise the whole program

Direct access Isolation confines attacker

SSL SL

Libr‘a% “ e Compartmentalization Library

HTT% FastCGI HTTE &k | FastCGI
Par‘sY Module jl> Parse Module

Monolithic Compartmentalized

Example: a web server (Apache) Isolation boundary

Compartmentalization

Software compartmentalization =

* design programs split into distrusting and isolated components
e such that if one of the components is breached, the attacker does
not compromise the whole program

Compartmentalization is applied to high-profile software

Server Software Web Browsers But also...

NGINX #APACHE Cve WIRESHARK

POSTFIX

mail

21

Compa_d'_m.gn_'l'gh?ghnn £70M

—~ Significant research funding

Area of investment and support
Digital security by design In recent years

The digital security by design (DSbD) challenge funds business and researchers to
update the foundation of the insecure digital computing infrastructure by creating a
new, more secure hardware and software ecosystem.

Budget: £70 million

Duration: From 2020 to 2025

Partners involved: Innovate UK, Engineering and Physical Sc INDUSTRY EMERGING INNOVATION INDUSTRY NEWS $50 M

£12M (EPSRC)
DARPA to Hold Compartmentalization

Contracts for innovation: DSbD Advancing | and priV"ege Management (CPM)
CHERI Tools and software
Proposers Day

Opportunity status: Closed

Funders: Innovate UK Full solutions are anticipated to require new hardware support, though software-only
Co-funders: Department for Science, Innovation and Technology solutions that can meet performance e xpectations are in-scope for the program.
Funding type: Other 7

Publication date: 19 May 2025 &4 By Homeland Security Today April 1, 2023

Opening date: 14 May 2025 9:30am UK time

Closing date: 18 June 2025 11:00am UK time

I See the full opportunity details on the Innovation Funding Service.

Organisations can apply for a share of up to £12 million, inclusive of VAT, to work on
maturing and enabling the availability of CHERI Tools and Software components for
RISC-V embedded devices that implement the CHERI architecture extensions.

22

We know from this experience that compartmentalization works

We know from this experience that compartmentalization works

Re: double-free vulnerability in OpenSSH server 9.1 (CVE-2023-25136)

From: Qualys Security Advisory <gsa () qualys com>
Date: Mon, 13 Feb 2023 12:02:13 +0000

Hi all,

On Thu, Feb 82, 2023 at 01:02:04PM +0000, Qualys Security Advisory wrote:

Exploiting this wulnerability will not be easy: modern memory allocators

provide protections against double frees, and the impacted sshd process
is unprivileged and heavily sandboxed.

Quick update: we were able to gain arbitrary control of the "rip”
register through this bug (i.e., we can jump wherever we want in sshd's
address space) on an unpatched installation of OpenBSD 7.2 (which runs
OpensSH 9.1 by default). This is by no means the end of the story: this
was only step 1, bypass the malloc and double-free protections. The next
steps, which may or may not be feasible at all, are:

- step 2, execute arbitrary code despite the ASLR, NX, and ROP
protections (this will probably require an information leak, either
through the same bug or through a secondary bug);

- step 3, escape from sshd's sandbox (through a secondary bug, either in
the privileged parent process or in the kernel's reduced attack
surface).

OpenSSH is vulnerable to a bug

with remote-code execution

(1) https://seclists.org/oss-sec/2023/ql/92

24

We know from this experience that compartmentalization works

Re: double-free vulnerability in OpenSSH server 9.1 (CVE-2023-25136)

From: Qualys Security Advisory <gsa () qualys com>
Date: Mon, 13 Feb 2023 12:02:13 +0000

Hi all,

On Thu, Feb 82, 2023 at 01:02:04PM +0000, Qualys Security Advisory wrote:

Exploiting this wulnerability will not be easy: modern memory allocators

provide protections against double frees, and the impacted sshd process
is unprivileged and heavily sandboxed.

Quick update: we were able to gain arbitrary control of the "rip”
register through this bug (i.e., we can jump wherever we want in sshd's
address space) on an unpatched installation of OpenBSD 7.2 (which runs
OpensSH 9.1 by default). This is by no means the end of the story: this
was only step 1, bypass the malloc and double-free protections. The next
steps, which may or may not be feasible at all, are:

- step 2, execute arbitrary code despite the ASLR, NX, and ROP
protections (this will probably require an information leak, either
through the same bug or through a secondary bug);

- step 3, escape from sshd's sandbox (through a secondary bug, either in
the privileged parent process or in the kernel's reduced attack
surface).

OpenSSH is vulnerable to a bug
with remote-code execution

It is exploitable: attackers can break
allocator-based mitigations

(1) https://seclists.org/oss-sec/2023/ql/92

25

We know from this experience that compartmentalization works

Re: double-free vulnerability in OpenSSH server 9.1 (CVE-2023-25136)

From: Qualys Security Advisory <gsa () qualys com>
Date: Mon, 13 Feb 2023 12:02:13 +0000

Hi all,

On Thu, Feb 82, 2023 at 01:02:04PM +0000, Qualys Security Advisory wrote:
Exploiting this wulnerability will not be easy: modern memory allocators
provide protections against double frees, and the impacted sshd process
is unprivileged and heavily sandboxed.

Quick update: we were able to gain arbitrary control of the "rip”
register through this bug (i.e., we can jump wherever we want in sshd's
address space) on an unpatched installation of OpenBSD 7.2 (which runs
OpensSH 9.1 by default). This is by no means the end of the story: this
was only step 1, bypass the malloc and double-free protections. The next
steps, which may or may not be feasible at all, are:

- step 2, execute arbitrary code despite the ASLR, NX, and ROP

protections (this will probably require an information leak, either
through the same bug or through a secondary bug);

- step 3, escape from sshd's sandbox (through a secondary bug, either in
the privileged parent process or in the kernel's reduced attack
surface).

\ AN

(1)
* OpenSSH is vulnerable to a bug

with remote-code execution
* |tis exploitable: attackers can break
allocator-based mitigations
 Compartmentalization ultimately
mitigates the exploit by containing
it in an unprivileged process

(1) https://seclists.org/oss-sec/2023/ql/92

26

Yet, in 2025, compartmentalization is not a widespread practice

Yet, in 2025, compartmentalization is not a widespread practice

Compartmentalization

Software compartmentalization =

« design programs split into distrusting and isolated components

« such that if one of the components is compromised, the attacker
does not own the full program

Compartmentalization is applied to high-profile software

Server Software Web Browsers But also...

y O
NGMX fapacHE &' @V @ S wrReSTARK

- Rev

)

Beyond the popular software | mentioned
earlier, compartmentalization is rather rare

Yet, in 2025, compartmentalization is not a widespread practice

Compartmentalization

Software compartmentalization =

« design programs split into distrusting and isolated components

« such that if one of the components is compromised, the attacker
does not own the full program

Compartmentalization is applied to high-profile software

Server Software Web Browsers But also...
- O
NGMX fAPACHE B @ V@ o WRESHARK

"Less than 56 apps out of the 1,520 most popular

Beyond the popular software | mentioned
earlier, compartmentalization is rather rare

SoK: §,)
oK: Software (,nmpnrmmnmlizaliun

,
Nathtn Dauteniygpg !
nitic, ~sef

Debian applications are compartmentalized" e

(1) Lefeuvre et al., SoK: Software Compartmentalization, S&P 2025 R e

a anified mode)
fning, undersiang.

29

Why ?

Why

%

SoK: ftware (.'umpurlmnntalizaliun

(1)

Hugo Lefeuyrett Nathay Dautentraty! + David Chispgly “. Pierre Olivieer
The Universiry of British ¢ Aunthia, Serenisiy, SCE Semicondycrey, “The Universiry o Manchesier

malier ¢

Abstract.— OMpastig large systems jo
With lmited privileges frys fong beer recognigeq
© the impact of exprgis, Dresp or
2 Bes (62, 149, 174 20y 3
e 167,470, 2301 0 dingon stacks [74], thwarting
SuPply-chain attacks |1 1) 351 and side-chanels [137, 176,
- Noting that 152), o providing fauk resilience |14 184]

XSS appruaches e raughy h inconsistencies in foqong. Despite tongsianging OGO Within the geaqeic
OORY aul anghyyieny Ehots, e propose 1 e Jrodel - sphert and proven effectiyanos. 1 Seminal industry projecys.
10 the systemang, iU, and directing of gegy. e adoption of Sombartmentalization techaiggen ty main-
Purtmentaliza roaches. We s 1his madet o poy lew 201 ST Software remyine inconsisient;

Following quuait [68), pgype 1121}, or Openssiy 1198, it

ises are plenty: contgining MENIOrY Safety issyes (73

s oo thid partios [34. 11 oo utsale party of syf,
7. 224 ing crypioy

pron
202,

reveaf Al aethogs,

PSS ¢t a g g5 s i alized 15 Sl {3 from bejng 5 g engin actice. Tuke
P ——— i Oboth I XAl fhe iy gion of CTYPiographic secrets, & pracyce
. long advocated by e Fymmunity {65, 70, 73 g7 115
Tesearch L g others, pyp Tudtugs o 2
" iy 17, 140, 158, 165, i6 211, 226, 232} buy Without vighje
by

ading crypiography fibraries. Al 8 time of

prechanisins, poles apurs frgn

Tecent research, We concinde wigy, recommendations: comgpug. i":‘”;‘f l,h:[- v‘:f‘-w :ﬂlh:\mr g'uhv on rmr cum:\ l'vrnc‘r;yr\
IPAIEtalization can iy S paper investigaies i
mentalization sty e o callY; progress i meeded COMpatmEntaljya e DUig. This papey i ©

" oans behind this status gy, g how 16 improye it

Research speculated oy o, SHUAion is due 1o, 4 i of

exeomtion [65, 353}, imitariggs of mechanisms {190, 739,
8, 23

T Compartmentatization,
heat inodels iy 1

es; 2 our |
izt of confused depues g HATATe imitatons; ug wep o SRV performance ey pros '+ ck of
Yomards bridging the gy Pinpoint between eSearch and SU00g security puarangees 1129, 160], smong othors All are
ainstream needs. This paper oy “n1Y MADS the bistorica) gng likely part of the propien, 40 through decades of reseqpe h
rent tands, fis N o) ;

oty TeWlsCApe of compargien bt alsa st forgp PROFESS was made o eyory front. Today e community

* feamenork o foster iy “volution an . Jacks & global overyiey of this progress Designing for
. o retrofitting Mmpartitientalization is ofieq bampered by
L lnlmductmn nconsistencies fir the Understanding g application of ji

. i SOICEPt. Existing modely gng Yerminologies are nimepoys
biities sl plague sop. -hoc, and ofien compagiy Jeading 10 confusion gy 3
and mouse, SOWINE body f wogk, gy ook be compared, The facy of
o privilege (POLP) 1309 yhe last line fslematic perspective leags 1o 5 MIsmaich between whay
of defense R protections fail o gy flaws are nnknoywp, softwarg COmpartmEslization pegs PIOZIss towards
By granting eycy SO0ty only the privileges niceded, the porp the maingtream, gy e focus and framing of rescarch ef.
ores that & compromise of g Pan itk not impiy; gy forts: most do not pagkjo oo PATITERIANZation's key yyperys
OF the whole, Sofhyqre Pop . mentalization is 4 prominen 452 whole and thas prodycy Soltions that canpoy relevany
pmplementation of the pyy Which developery divige 5 o muking it 3 myginugpege practice,
M0 progriom intg ngiier lesser privifegeg Componcnts, 1 SCOIZing these chrlienpen s PI9POSE & ifieq ey
reduce the impact of POIERtal security bregcye providing a cansisian framework for defining, understapg.
Software mmyv:nnmnmhmnmvmhwih from a farge bogy ing, and impicowcnting com, Armentalization, This mode]
of work, starting with procegges 1931: including O modely ES With 2 comprehensgy 1aX0n0my that ljgws 1o clas
3uch as microkemels {16, 1o5 150, 164, COmpTtNENaYization s ¥
and separation kernels 156, 53, 3 miethods, abstractios,
Y OSes 83, 1257y g way "
compartmentalization i e 20005 f14 232 2 We validate our ool L LT - g
smisedwib e 211 tescarch ung g1 MRS Software sypgeme imple.
o Duwscniubn menting o ParmEntalization, Dajyy s his study pro,
i VIS unique insights ing,y g MANSITEAM efforts hyye

Despite decades o ofgn, vulne,
o, 8nd thwarting thep pemyjns o game of
The principle of

"This work was primariy dong hile Fugo Loty o
i ankhestt and SC1 Servipugyer and
(il mincr comtibuions a1 Riveacs Rescare

lization,
Compartmenta

t al., SoK: Software

(1) Lefeuvre e

S&P 2025

Systematizing Compartmentalization

Here is how we approached the question:

Started by making a fundamental observation: experts do
not even agree on what compartmentalization is

 Define a fundamental model and consistent terminology for
compartmentalization

Propose a taxonomy for evaluating compartmentalization
approaches and apply it systematically to a wide set (200+)
of research and mainstream efforts

From this: extract a set of core challenges

32

Systematizing Compartmentalization

Here is how we approached the question:

e Started by making a fundamental observation: experts do
not even agree on what compartmentalization is

 Define a fundamental model and consistent terminology for
compartmentalization

Systematizing Compartmentalization

Here is how we approached the question:

Started by making a fundamental observation: experts do
not even agree on what compartmentalization is

 Define a fundamental model and consistent terminology for
compartmentalization

Propose a taxonomy for evaluating compartmentalization
approaches and apply it systematically to a wide set (200+)
of research and mainstream efforts

Systematizing Compartmentalization

Here is how we approached the question:

Started by making a fundamental observation: experts do

not even agree on what compartmentalization is

 Define a fundamental model and consistent terminology for
compartmentalization

Propose a taxonomy for evaluating compartmentalization
approaches and apply it systematically to a wide set (200+)
of research and mainstream efforts

From this: extract a set of core challenges

My promise for this talk

A journey through twenty years of
compartmentalization

1. What is software compartmentalization? (slightly more formal)
2. A systematic perspective on compartmentalization
3. The why: compartmentalization everywhere, what will it take?

My promise for this talk

A journey through twenty years of
compartmentalization

1. What is software compartmentalization? (slightly more formal) @

2. A systematic perspective on compartmentalization
3. The why: compartmentalization everywhere, what will it take?

What is Software Compartmentalization?

Software compartmentalization is...
* asoftware engineering practice

What is Software Compartmentalization?

Software compartmentalization is...
e asoftware engineering practice where developers break down a
program into groups of isolated/distrusting components

What is Software Compartmentalization?

Software compartmentalization is...

e asoftware engineering practice where developers break down a
program into groups of isolated/distrusting components, each
controlling only the resources they precisely require

What is Software Compartmentalization?

Software compartmentalization is...

a software engineering practice where developers break down a
program into groups of isolated/distrusting components, each
controlling only the resources they precisely require

an embodiment of the principle of least-privilege

What is Software Compartmentalization?

Software compartmentalization is...

e asoftware engineering practice where developers break down a
program into groups of isolated/distrusting components, each
controlling only the resources they precisely require

 an embodiment of the principle of least-privilege

Fundamental idea:
* ifacomponentis compromised, attackers are restricted to the
permissions of the compromised component

What is Software Compartmentalization?

Software compartmentalization is...

e asoftware engineering practice where developers break down a
program into groups of isolated/distrusting components, each
controlling only the resources they precisely require

 an embodiment of the principle of least-privilege

Fundamental idea:

* ifacomponentis compromised, attackers are restricted to the
permissions of the compromised component

* to escalate privileges and compromise the rest of the system, attackers
must find and exploit additional software vulnerabilities

What is Software Compartmentalization?

Going back to our previous example...

Direct access

HTTP | FastCGI |
Parser : Module :
Web Server

Monolithic

=)

Compartmentalization

"SW Engineering Practice"

Isolation Boundary

HTTP FastCGI
Parser Module

m\Web Server

‘ Isolatlon prevents leak

SSL Keys

Compartmentalized

44

What is Software Compartmentalization?

O Protection Domain

Going back to our previous example...

Isolation Boundary

! FastCGI : EEE e EG

. Module Module
Web Server :> P =

Direct access

Jompartmentalization
JSW Engineering Practice"

Components now distrust each other "

What is Software Compartmentalization?

. . O Protection Domain
Going back to our previous example...

Isolation Boundary

. , FastCGI
Compartmentalizing adds a (potentially Module

very tricky) step on the attacker's path
towards taking over the program

Components now distrust each other "

What is Software Compartmentalization?

Software compartmentalization is applicable to any kind of program

What is Software Compartmentalization?

Software compartmentalization is applicable to any kind of program

Web Browsers Server Software

o ® Neinx e

qmail

Applications

What is Software Compartmentalization?

Software compartmentalization is applicable to any kind of program

Microkernels

ﬁ °
g Fuchsia g yarnels

What is Software Compartmentalization?

Software compartmentalization is applicable to any kind of program

But also: hypervisors, firmware, etc.

50

What is Software Compartmentalization?

Software compartmentalization can be applied to new as well as
existing programs:

* When applied to existing programs, we talk about retrofitting

What is Software Compartmentalization?

Software compartmentalization can be applied to new as well as
existing programs:

* When applied to existing programs, we talk about retrofitting

Some programs which included compartmentalization in their
design in the first place (non-exhaustive!):

gmail”®

*Mail transfer agent, one of the first compartmentalized
programs to the best of my knowledge

What is Software Compartmentalization?

Software compartmentalization can be applied to new as well as
existing programs:

* When applied to existing programs, we talk about retrofitting

Some programs which included compartmentalization in their
design in the first place (non-exhaustive!):

gmail”®

...and some where it was retrofitted:

*Mail transfer agent, one of the first compartmentalized
programs to the best of my knowledge

What is Software Compartmentalization?

Still, software compartmentalization as we refer to here applies within
one program, not across programs

What is Software Compartmentalization?

Still, software compartmentalization as we refer to here applies within
one program, not across programs

Isolation Boundary

HTTP FastCGI
Parser Module
Web Server

SSL Keys

Within one program

SW Compartmentalization

What is Software Compartmentalization?

Still, software compartmentalization as we refer to here applies within
one program, not across programs

Isolation Boundary

HTTP FastCGI 6
Parser Module
Web Server Operating System
SSL Keys NG:NX
Within one program Across programs
SW Compartmentalization Not SW Compartmentalization =6

What is Software Compartmentalization?

Still, software compartmentalization as we refer to here applies within

one progran More general isolation: share challenges and solutions
with software compartmentalization as we define it

S

>

Operating System

NGINX

AcCross programs

Not SW Compartmentalization -7

(1) Shu et al., A Study of Security Isolation Techniques, CSUR 2016

What is Software Compartmentalization?

Still, software compartmentalization as we refer to here applies within

one progran More general isolation: share challenges and solutions
with software compartmentalization as we define it

(1) M)

A Study of Security Isolation Techniques

RUI SHU, PEIPEI WANG, SIGMUND A. GORSKI Ill, BENJAMIN ANDOW, ADWAIT
NADKARNI, LUKE DESHOTELS, JASON GIONTA, WILLIAM ENCK, and XIAQOHUI GU,

Operating System

Security 1solation is a foundation of computing
This

ems that enables resilience to different forms of attacks.
article seeks to understand existing security isolation techniques by systematically classifying different
approaches and analyzing their properties. We provide a hierarchical classification structure for grouping

different security isolation techniques. At the top level, we consider two principal aspects: mechanism and '
policy. BEach aspect is broken down into salient dimensions that describe key properties, We break the ' o o o
mechanism into two dimensions, enforcement location and isolation granularity, and break the policy aspect

down into three dimensions: policy generation, pelicy configurability, and policy lifetime. We apply our
[fication to a set of representative articles that cover a breadth of seeurity isolation techniques and
discuss tradeoffs among different design choices and limitations of existing approaches.

CCE Concepts: ® General and reference —+ Surveys and overviews; ® Security and privacy
Systems security;

Additional Key Words and Phrases: Security 1solation, access control, resilient architectures

ACM Reference Format:
Eui Shu, Peipei Wang, Sigmund A, Gorski [11, Benjamin Andow, Adwait Madkarni, Luke Deshotels, Jazon C rOS S p rog ra I I ls
Gionta, William Enck, and Xiaohui Gu. 2016. A study of security isolation technigues, ACM Comput. Surv,
Not SW Compartmentalization

49 3 Article 50 (October 2016)
DOT; httpdide.doi.org 1011452

14 INTEODIICTION

What is Software Compartmentalization?

Software compartmentalization can target different trust models

What is Software Compartmentalization?

Software compartmentalization can target different trust models

Isolation Boundary

Sandbox

Sandbox: component isolated to
protect the rest of the system

All but the sandbox is trusted

60

What is Software Compartmentalization?

Software compartmentalization can target different trust models

Isolation Boundary What is Software Compartmentalization?

Going back to our previous example...

] 1solation Boundary

{ HTTP | | FastcGI HTTP FastCGI
S a n d box e o o ‘ { Parser i | Module Parser Module
w Web Server |:> Web Server
Direct access Isolation prevents leak
i v I Compartmentalization
i SSL K H SSL Keys
eys i "SW Engineering Practice" ¥

Menolithic Compartmentalized

Sandbox: component isolated to
protect the rest of the system

All but the sandbox is trusted

What is Software Compartmentalization?

Software compartmentalization can target different trust models

Isolation Boundary

Sandbox . .. Safebox

Sandbox: component isolated to Safebox: component isolated to
protect the rest of the system protect it from others

All but the sandbox is trusted Only the safebox is trusted

What is Software Compartmentalization?

Software compartmentalization can target different trust models

Isolation Boundary

Sandbox

Safebox

Mutual Mutual
Distrust Distrust
Mutual
Distrust

Sandbox: component isolated to
protect the rest of the system

All but the sandbox is trusted

Safebox: component isolated to
protect it from others

Only the safebox is trusted

Mutual distrust: components
distrust each other

63

What is Software Compartmentalization?

Software compartmentalization can target different trust models

These trust models are
distinct and result in different
software architectures

\ &

Isolation Boundary

e

Sandbox: component isolated to Safebox: component isolated to Mutual distrust: components
protect the rest of the system protect it from others distrust each other

All but the sandbox is trusted Only the safebox is trusted

64
(1) https://fr.wikipedia.org/wiki/Panoptiquett/media/Fichier:Kilmainham_1.JPG (2) https://en.wikipedia.org/wiki/Bank vault#/media/File:WinonaSavingsBankvVault.JPG (3) https://en.wikipedia.org/wiki/File:Panmunjeom DMZ.png

What is Software Compartmentalization?

Software compartmentalization can target different properties

What is Software Compartmentalization?

Software compartmentalization can target different properties

Isolation Boundary

{3

Distrusted -

Integrity: compartment cannot
alter other compartment's data

66

What is Software Compartmentalization?

Software compartmentalization can target different properties

Isolation Boundary

S S
W W

Distrusted Distrusted

Integrity: compartment cannot Confidentiality: compartment
alter other compartment's data cannot read other
compartment's data

What is Software Compartmentalization?

Software compartmentalization can target different properties

Isolation Boundary

Gl [| { m—)
Distrusted @ Distrusted @ Distrusted G/
Integrity: compartment cannot Confidentiality: compartment Availability: compartment
alter other compartment's data cannot read other cannot prevent other

compartment's data compartments from operating

68

What is Software Compartmentalization?

Software compartmentalization can target different properties

Isolation Boundary

H Necessary: no confidentiality or

Distrusted @ availability without integrity

Integrity: compartment cannot
alter other compartment's data

My promise for this talk

A journey through twenty years of
compartmentalization

(]
A a ;A A - AlAaaAalNa aavala Al a ol a
v V @ \J VvV O \J NI U @ @ \J ° \

2. A systematic perspective on compartmentalization @
3. The why: compartmentalization everywhere, what will it take?

Take a step back: How do practitioners compartmentalize?
What does research say? What are open challenges?

Bigger Picture of Compartmentalization

Propose to view compartmentalization as 3 problems:

Bigger Picture of Compartmentalization

Propose to view compartmentalization as 3 problems:

1. How to determine the right policy to enforce?

o Done with a policy definition method

Bigger Picture of Compartmentalization

Propose to view compartmentalization as 3 problems: \? .
1. How to determine the right policy to enforce? =
o Done with a policy definition method |

2. How to integrate the notion of compartmentalization
policies in software / programming models / idioms?
o Done with a compartmentalization abstraction

Bigger Picture of Compartmentalization

Propose to view compartmentalization as 3 problems: ?

~ B

1. How to determine the right policy to enforce?
o Done with a policy definition method |

2. How to integrate the notion of compartmentalization

policies in software / programming models / idioms? /}\
o Done with a compartmentalization abstraction a

v

O

3. How to enforce policies at runtime?
o Done with a compartmentalization mechanism ‘

Bigger Picture of Compartmentalization

Propose to view compartmentalization as 3 problems: ?

~ C
1. How to determine the right policy to enforce?
@ o Done with a policy definition method |

2. How to integrate the notion of compartmentalization

policies in software / programming models / idioms? /}\
o Done with a compartmentalization abstraction a

v

O

3. How to enforce policies at runtime?
o Done with a compartmentalization mechanism ‘

Problem #1
How to determine the right policy to enforce?

Developers must define which components are to be separated and
which properties should be enforced on the resulting compartments

?
~ O

Problem #1
How to determine the right policy to enforce?

Developers must define which components are to be separated and
which properties should be enforced on the resulting compartments
* The result is a compartmentalization policy

Problem #1
How to determine the right policy to enforce?

Developers must define which components are to be separated and
which properties should be enforced on the resulting compartments
* The result is a compartmentalization policy

To design policies, developers employ a
Policy Definition Method

Policy Definition Methods

Historically, people have done this manually.

Policy Definition Methods

Historically, people have done this manually.

Example: we want to split this C program.

F—— === [—— —— =+
i1 HTTP 1 | FastCGI |
I Parser : I Module :
F—— === [—— —— =+
[SSL I I
'L1brary: L :

(Fictive monolithic program)

Policy Definition Methods

Historically, people have done this manually.

Example: we want to split this C program.

A developer looks attentively at the program...
: HTTP 1 :FastCGI1
' Parser : ' Module :
[—=— === [e
[SSL I I
'L1brary: L :

(Fictive monolithic program)

Policy Definition Methods

Historically, people have done this manually.

Example: we want to split this C program.

A developer looks attentively at the program...
Ir HTTP -: FastCGI -; Network-exposed
1" . r [—, _ p— -
| Parser | ! Module | I do not trust this | HTTP |
" I |
R —— - - component Parser
SSL 1 ! e [-"—
: ! : . ! complex had CVEs
Library |

(Fictive monolithic program)

Policy Definition Methods

Historically, people have done this manually.

Example: we want to split this C program.

A developer looks attentively at the program...
: HTTP 1 I FastCGI1 _____
3 Ea_Pfe_P_: 3 Mo_dgl_e_: "I do not trust this | HTTP | | HTTP
r==—=-- B S - component” L Parser | ndbox LParser
[SSL I I
' Library : ' :

(Fictive monolithic program)

Policy Definition Methods

Historically, people have done this manually.

Example: we want to split this C program.

A developer looks attentively at the program...
| HTTP | | FastCGI |
| Parser | ! Module | "I do not trust this | HTTP | | HTTP
- oo o rm o - | component’ L Parser | sandpox LParser
: L_lzi_gty_i :) -_-_-_ _i | Holds sessio.n keys
"I particularly value | ssL 1
(Fictive monolithic program) this component” :_Libr‘a ry :

Formally-verified

Policy Definition Methods

Historically, people have done this manually.

Example: we want to split this C program.

A developer looks attentively at the program...

r—=-=-—== - I L -
i HTTP 1 | FastCGI |
' | . F——=—== ~
| Parser | Module | "I do not trust this | HTTP | HTTP
" | | >

IETaas aaaaa L component L Parser | sandbox LFarser
' Library : ' : o .

""""" "I particularly value | ssL 1) SSL

o | o | i .

(Fictive monolithic program) this component” L Library safebox Library

This is still the most common way to do it today.

Systematizing Policy Definition Methods

Policy Definition Methods are a very active research
area, with goals such as...

Minimize developer effort o
o Maximize performance
Maximize soundness

o . Maximize security of interfaces
Minimize over-privilege

We systematized these works in our SoK

Systematizing Policy Definition Methods

Policy Definition Methods are a very active research
area, with goals such as...

Minimize developer effort o
o Maximize performance
Maximize soundness o _ .
L . Maximize security of interfaces
Minimize over-privilege

(1)

oftware Compartmentaizafion

120 Lefeuvre™ y,
The Ur unm o British Columpig, e udmm"

Did Chiay
Sl Somconducr, <13, gon I

Serenii

of Manctesier

g
i g
with limited i ot

o st

feges by lang b P
€t cogni

b

v I 65, Pt

[Em ml)p.w\SNH‘lH m

e et e Promise.
PUOMies are plemy; congy
el nemary safery
i il s 54 it
; dhr 154 181). o tneate gy o 1o

et 1 m :x:[or ».mm sacks (14) gt

Sidecanns 137 175,
Shanechs (137, 176,

0 o
existing approache -

2ot povig
Do oo e

v cxampl e oty

b o o
towards. nnaung I‘ .
[l

ot s

" threa
els
e LIt Specutated iy
: Humv““‘w P e s Stuion v g g
ot ations of mech

5aps we mmmm between re .
= e i, ol

ecds, This "
ot) e strong secy
5 the istoricat ag 8y Scnts (129, o

< prob

e of com
A fremeway oy
™ 10 ot e

. d k . S K
T Ul oty our gy g PO o crypogrpes
e SyS t e a t I Z e t e S e W O S I O u O “'mM"vm-.m...,,.w\m-.,m... e e, 11 140 13010, o (0
o b i et 7 44700 by Ralng g 2 b v
e n:w....b,,., s o, I e <TTOaphy ibraren vE
it 4m1 i 1‘.,‘“,“,,, i M”m i S s TS pope i
ey 0. e

TABLE 1: Taxonomy of Policy Definition Methods. PDMs that also propose an abstraction are marked with #. Manual (ot
) . . L 1w "
and fully automated (@) policies do not leverage a policy language, thus the column features Not/Applicable roduction
IS decades of ftor, vy
— Antowration Pollcy Language Tipe Separation | Anabial | o — [Language | Addirional God omatlarn hem remmal ’,’(““"“‘“‘\“"mv soft Existing niadegs - e and ;,mwa‘\y, o
Separation Method Annotations | Placewent Rales | G Approach | Sublect Selectton | g, i | Perfarmance | Taterfuce Safes oo et g (o 5y o pdmowe S ‘;‘}’ "'w‘unnmu‘lf'."“,"”’,“”’" o
[| wheh protections gy oy ST the Tog e SN by 0 ey o EIOE 0 oo
T - - = e o = ’H“h"v‘:mlxu pord ;h!‘“rn!y\uy% \«um\kr\:viu A systemagic «"m.“‘"‘“‘;Hm-\lhxwhvmu ,nmhn;
T Of he it 4 COMPIOSE of o pot oy e he Po SO Companimepi s & £ TSP ety s
[t T | Function Conde<er T £0he o oo, 4.,“,‘,,,",,,”5,,‘” i oy e ‘"»nwm,,“, i S 10 g s
MPD* 1 192 @ Componcnt Fw— . ry et of e o o G s, T o
CabileOS 1 = . iLibrary 3 < po ey g 28l nlumm\;r:l:‘\dxl‘!‘;” o' key wpety
ction mpac bronteged comporsos, 1 in Aot b eTengny
g :) ;ulzh‘.L: : o » ‘,;,‘r,m,ﬂ,\?wm, s pebogy | P e W\ s i o
RLBox® 111 = 3 Function - - and W s (106 130 15 08 05 e, 400 mpircny ﬁm,y:w for etining, undersgn.
o 181 anction weation Kemets (56, 5, 308 gon 258 se s Wi compc AeNttion, Ty oy
Ear (I Ay) - - o 98 5 135 m' e ey 1062 S Comatncn s ST ot oy
SeCage® s . Function Hybrid . R o0 1 i
| PuSplic™ 1) = e Function Static e '";‘;"j:;\g;gn,;ym‘&l pip b
) . Function Hybrid . i s i Ot
C) . Function Static . D
[=] L] Any Static L]
) . Any Static .
) . Any Static D D
] . . Static L] L]
= -) Hybrid . .
3) . . Static Conde<eniric .
Cali* o)] . Static Code-centric
CompartOS™ (33 [) Static Codecentric
[Enclosure®™ 1) e 1 [} Static. .
| BreakApp® -) " Static)
[Comy mkm* e 1 . Static D)
[ACES* ot - . Function Any” Codecentr 1 L f t I S K N S ft
ogmnCorer s . Ficion | Dy | Codecnric | (ereuvre et al., SO0K: >ortware
L Any Dynamic Coddeceniric .
ided 1 T Loader-based. st analysis, dyr ysis possible o] C t I . t- S& P 20 25 87
ompartmentalization,

stematizing Policy Definition Methods

Policy definition methods table from the paper

TABLE 1: Taxonomy of Policy Definition Methods. PDMs that also propose an abstraction are marked with #%. Manual (O)
and fully automated (@) policies do not leverage a policy language, thus the column features Not/Applicable.

. . i Policy Language Type Separation Analysis N § . Language | Additional Goals of Automation
Policy Definition Method Agtgn;a:’(’m Anm)mria)ns | Pé:,'ac'fmegf Rules Grgnulariw Apprgach Subject Selection Spfc'iﬁf’ Performance | Inr;:'fac'e Safety
[Manual 1281, [...] | (@) | N/A | N/A | Any | Manual | Any | [@) [N/A | N/A |
Crowbar [70] [¢] O O Function Dynamic Code-centric [@) O O
MPDs* [191, 192] @ O O Component Hybrid Code-centric []] @]
CubicleOS* 211])] o pLibrary Static” Code-centric] O O
Google SAPT* 1221 @]) Function Static Code-centric] O O
FlexOS¥ [143, 161] [¢) [) peLibrary Dynamic Code-centric] (] @)
RLBox* [181] ¢] O Function Static Any [O [
SOAAP* [117]) ® @) Any Hybrid Any [® [
SeCage* [171]] [] @] Function Hybrid Code-centric] O @]
PtrSplit* [169]]] O Function Static Code-centric [] O @]
PrivTrans™ [73] - [O Function Hybrid Code-centric] O @)
Glamdring* [165] [« [O Function Static Code-centric] O]
Shreds™® 1871, CAPACITY™ [105])] O Any Static Code-centric @) O []
DataShield™ [77] (=)] O Any Static Code-centric O O []
Swift™ [89] -] O Any Static Code-centric] O]
Jif¥ 1261] [w) [) Any Static Code-centric] O]
PM [170] [<] o e Function Hybrid Code-centric] [] O
KSpli[* [133] () [) Driver Static Code-centric] O @]
Cali* [63] S O o Library Static Code-centric O O O
CompartOS* [55] <) O (] Linkage Unit Static Code-centric @) O @]
Enclosure™ 1] <) O) Package Static Code-centric] O O
BreakApp* [235] [w] O [] Package Static Code-centric] O @]
CompARTist* [132] () O) Library Static Code-centric] O O
ACES™ [90] - O) Function Any3 Code-centric O O O
ProgramCautter [253] ® N/A N/A Function Dynamic Code-centric o O O
1tSCOPE [202], SCALPEL [203] ® N/A N/A Any Dynamic Code-centric O o @)

I'O = manual, ® = guided manual, ® = policy refinement, @ = full automation. > Loader-based. > Implemented with static analysis, dynamic analysis possible [90).

Names of the policy definition methods we consider

Characteristics we included in the taxonomy

. L. j Policy Language Type Separation Analysis . . Language | Additional Goals of Automation

e Lk glicney Agtgn;af?n Annomrio}r]’is | P%acfme;z{) Rules Grgnularity Apprzach Bub s ceree Spfciﬁi Performance | Inte{face Safety
[Manual [12s], [...] | O | N/A | N/A | Any | Manual | Any | O | N/A \ N/A |
Crowbar [70] @ O O Function Dynamic Code-centric O O O
MPDs™ [191, 192] @ @) @) Component Hybrid Code-centric o (] O
CubicleOS™ 11 @ (] (] pLibrary Static” Code-centric ® @) O
Google SAPI* [22] @ @ [] Function Static Code-centric ® @) O
FlexOS™ (143, 161] C) [] [] pLibrary Dynamic Code-centric o [] O
RLBox™ [131] @ ® Q) Function Static Any ® O)
SOAAP* [117) ® ° 0 Any Hybrid Any ° ° °
SeCage* [171]) [] O Function Hybrid Code-centric o @) O
PtrSplit* [169]) o O Function Static Code-centric ® O O
PrivTrans™ [73] (w) o O Function Hybrid Code-centric ® O O
Glamdring* [165] () [] @) Function Static Code-centric ® O ®
Shreds™ (871, CAPACITY™ [105] @ (] O Any Static Code-centric O @)]
DataShield* (771] (] @) Any Static Code-centric O @) o
Swift* 9] & o @) Any Static Code-centric ® @) ®
| 3if [261) @ [] (] Any Static Code-centric o @) o

PM (170 (<) (] (] Function Hybrid Code-centric o (] O
KSplit’!= [133] @ (] (] Driver Static Code-centric o @) O

Cali* (65] @ O) Library Static Code-centric O @) O
Compar[OSﬂz (551 v O (] Linkage Unit Static Code-centric O O O
Enclosure™ [111] @ O (] Package Static Code-centric @ O @)
BreakAppsE [235] w) @] o Package Static Code-centric [] @) O
CompARTistﬂa [132]) O () Library Static Code-centric ® O O
ACES¥ [90] (w) O (] Function Any3 Code-centric @) O O
ProgramCutter [253] [N/A N/A Function Dynamic Code-centric o O O
1SCOPE [202], SCALPEL [203] [] N/A N/A Any Dynamic Code-centric @ Y O

'O = manual, ® = guided manual, ® = policy refinement, @ = full automation. > Loader-based. * Implemented with static analysis, dynamic analysis possible [90).

89

Names of the policy definition methods we consider

Characteristics we included in the taxonomy

. L. j Policy Language Type Separation Analysis . . Language | Additional Goals of Automation
oA iiontM e Ry Agtgmea:?n Annomrio}r]’is | P%acfmer{f Rules Grgnularity Apprzach Bub s ceree Spfciﬁi Performance | Intgzjface Safety
JdEEIEAS > X VN N/A [Any | Manual | Any [0 | Na | N/A |

O @ O @) Function Dynamic Code-centric O @) O
MPDs™ [191, 192] @ @) @) Component Hybrid Code-centric o (] O
CubicleOS™ 11 @ (] (] pLibrary Static” Code-centric ® @) O
Google SAPI* [22] @ @ [] Function Static Code-centric ® @) O
FlexOS™ [143, 161] ® [] (] pLibrary Dynamic Code-centric @ (] @)
RLBox™ [131] @ ® Q) Function Static Any ® O)
SOAAP* [117) ® ° 0 Any Hybrid Any ° ° °
SeCage* [171]) [] O Function Hybrid Code-centric o @) O
PtrSplit* [169] @ @ O Function Static Code-centric ® O O
PrivTrans™ (73] () o O Function Hybrid Code-centric ® O O
Glamdring* [165] () [] O Function Static Code-centric ® O ®
Shreds™ (871, CAPACITY™ [105] @ (] O Any Static Code-centric O @)]
DataShield* (771] (] @) Any Static Code-centric O @) o
Swift* 9] & o @) Any Static Code-centric ® @) ®
| 3if [261) @ [] (] Any Static Code-centric o @) o
PM [170] () o (] Function Hybrid Code-centric o (] @)
KSplit’!= [133] @ (] (] Driver Static Code-centric o @) O
Cali* (65] @ O) Library Static Code-centric O @) O
Compar[OSﬂz (551 v O (] Linkage Unit Static Code-centric O O O
Enclosure™ [111] @ O (] Package Static Code-centric @ O @)
BreakAppsE [235]) O (] Package Static Code-centric o O @)
CompARTistﬂa [132] v O (] Library Static Code-centric ® O O
ACES™ [90] (o} O o Function Any3 Code-centric @) @) O
ProgramCutter [253] [] N/A N/A Function Dynamic Code-centric @ O O
1SCOPE [202], SCALPEL [203] [] N/A N/A Any Dynamic Code-centric @ o O

'O = manual, ® = guided manual, ® = policy refinement, @ = full automation. > Loader-based. * Implemented with static analysis, dynamic analysis possible [90).

90

Names of the policy definition methods we consider

Characteristics we included in the taxonomy

. L. j Policy Language Type Separation Analysis . . Language | Additional Goals of Automation
oA iiontM e Ry Agtgn;af?n Annomrio}r]’ts | P%acfme;z{) Rules Grgnularity Apprzach Bub s ceree Spfciﬁi Performance | Inte{face Safety
JdEEIEAS > X VN N/A [Any | Manual | Any [0 | ~Na | N/A |

O T @ O @) Function Dynamic Code-centric O @) O
MPDs™ [191, 192] @ @) @) Component Hybrid Code-centric o (] O
CubicleOS™ 11 @ (] (] pLibrary Static” Code-centric ® @) O
Google SAPI* [22] @ @ [] Function Static Code-centric ® @) O
FlexOS™ (143, 161] C) [] [] pLibrary Dynamic Code-centric o [] O
RLBox™ [131] @ ® Q) Function Static Any ® O)
SOAAP* [117) ® ° 0 Any Hybrid Any ° ° °
SeCage* [171]) [] O Function Hybrid Code-centric o @) O
PtrSplit* [169]) o O Function Static Code-centric ® O O
PrivTrans™ [73] (w) o O Function Hybrid Code-centric ® O O
Glamdring* [165] () [] @) Function Static Code-centric ® O ®
Shreds™ (871, CAPACITY™ [105] @ (] O Any Static Code-centric O @)]
DataShield* (771] (] @) Any Static Code-centric O @) o
Swift* 9] & o @) Any Static Code-centric ® @) ®
| 3if [261) @ [] (] Any Static Code-centric o @) o
PM (170 (<) (] (] Function Hybrid Code-centric o (] O
KSplit’!= [133] @ (] (] Driver Static Code-centric o @) O
Cali* (65] @ O) Library Static Code-centric O @) O
C()mpar[OSﬂz (551 v O (] Linkage Unit Static Code-centric O O O
Enclosure™ [111] @ O (] Package Static Code-centric @ O @)
BreakAppsz [235] w) @] o Package Static Code-centric [] @) O
CompARTistﬂa [132]) O () Library Static Code-centric ® O O
ACES¥ [90] (w) O (] Function Any3 Code-centric @) O O
ProgramCutter [253] [N/A N/A Function Dynamic Code-centric o O O
1SCOPE [202], SCALPEL [203] [] N/A N/A Any Dynamic Code-centric @ Y O

'O = manual, ® = guided manual, ® = policy refinement, @ = full automation. > Loader-based. * Implemented with static analysis, dynamic analysis possible [90).

This talk: present a few interesting aspects, many more in the paper (=

91

Automation is a key research topic in PDMs

Entirely
manual

Policy Definition Method Aumman?n
cCoSe

[Manual [12s], [...] |

Crowbar [70]
MPDs* [191, 192]
CubicleOS™ [211]
Google SAPIF [22)
FlexOS™ [143, 161]
RLBox™ [131]
SOAAP* [117]

SeCage* [171]
PtrSplit* [169]
PrivTrans™ (73]
Glamdringﬁlc [165]
Shreds™ (871, CAPACITY ™ [105]
DataShield® [77]
Swift™ (8]

[Jif (261

PM (170

KSplit* [133]

Cali* (65)
CompartOSE 551
Enclosure™ [111]
BreakAppﬂz [235]
CompARTist* [132]
ACES™ [90]

Fu "y ProgramCutter [253]

WUSCOPE [202], SCALPEL [203]

auto matEd "' O = manual, ® = guided manual

L HOOEOROROEORORCECRCRCECRORIGIOIUICERe e elele e

Automation is a key research topic in PDMs

Entirely
manual

Fully
automated

Policy Definition Method Agtgn;m.i?n Anmft{;lritco‘r}?f Trgz?f:@e??;ules

[Manual [12s], [...] | N/A | N/A |
Crowbar [70]
MPDs™ (191, 192]

CubicleOS* 211]

Google SAPIF [22)

FlexOS™ [143, 161]

RLBox* [181]

SOAAP* [117]

SeCage* [171]

PtrSplit* [169]

PrivTrans™ (73]

Glamdringﬁlc [165]

Shreds™ (871, CAPACITY ™ [105]

DataShield® [77)

Swift* [89]

Jif* [261]

PM (170

KSplit* [133]

Cali® [65]

CompartOS* 551

Enclosure™ [111]

BreakAppﬂz [235]

CompARTist* [132]

ACES™ [90]

ProgramCutter [253]

WUSCOPE [202], SCALPEL [203]

L OO OEOROEORORCRCRCRCRCROICIOIUIC e e e lieliele e

o0 e e e e e ee OO0 00Ol eeeO0O

IOOOOOO.......... oo e e e 0

N

[They achieve automation

"' O = manual, ® = guided man

leveraging different kinds of
inputs from developers.

93

Automation is a key research topic in PDMs

Entirely

Policy Definition Method Aummati?n Analysis
I ocee Approach
Mmanua [Manual 120, [...] o
Crowbar [70] [¢) Dynamic
MPDs™ (191, 192] ® Hybrid
CubicleOS™ [211] ® Static?
Google SAPIF [22) ® Static
FlexOS™ [143. 161] ® Dynamic
RLBox™ [131] ® Static
SOAAP* [117] @ Hybrid
SeCage™ 171] © Hybrid
PtrSplit* [169]) Static
PrivTrans™ (73] (w) Hybrid
Glamdring™ [165] () Static
Shreds™ (871, CAPACITY ™ [105] (] Static
DataShield® [77] S Static
Swift* [s9] ® Static
[Jif (261 @ Static
PM [170] < Hybrid
KSplit™ (1331 @ Static
Cali* (65 S Static
CompartOS* 551) Static
Enclosure™ [@ Static
BreakApp™ [235) S Static
CompARTistﬂa [132]) Static
ACES™ [00] w) Any3
Fu "y ProgramCutter [253] [)
WUSCOPE [202], SCALPEL [203] []

aUtomatEd "' O = manual, ® = guided manual, They emp|0y diﬁerent kindS
of analysis techniques (static,

dynamic, hybrid)

Automation is a key research topic in PDMs

Entirely
manual

Fully
automated

Policy Definition Method

Automation
cose

[Manual [12s], [...]

Crowbar [70]

MPDs™ [191, 192]

CubicleOS* 211]

Google SAPIF [22)

FlexOS™ [143, 161]

RLBox* [181]

SOAAP* [117]

SeCage* [171]

PtrSplit* [169]

PrivTrans™ (73]

G]amdringﬁlc [165]

Shreds™ (871, CAPACITY ™ [105]

DataShield* [77]

Swift* [89]

Jif* [261]

PM (170

KSplit* [133]

Cali® [65]

CompartOS* 551

Enclosure™ [111]

BreakAppﬂz [235]

CompARTist* [132]

ACES™ [90]

ProgramCutter [253]

L OO OEOROEORORCRCRCRCRCROICIOIUIC e e e lieliele e

WUSCOPE [202], SCALPEL [203]

"' O = manual, ® = guided manual,

Specializing on a particular
programming language is often
necessary to simplify the problem

Language
Specific

Oe|lC e eeCCeeee0CeeoeeOH

static analys

95

(1) Liu et al., PtrSplit: Supporting General Pointers in Automatic Program Partitioning, CCS 2017

Pick one influential example from the literature: PtrSplit'”

Language | Additional Goals of Automation

- . Automation Policy Language Type Separation Analysis
Policy Definition Method Specific | Performance | Interface Safety

cmse' |Annotations | Placement Rules | Granularity Approach Subject Selection

PtrSplit* [169] ‘) I o O Function Static Code-centric o O O

96

(1) Liu et al., PtrSplit: Supporting General Pointers in Automatic Program Partitioning, CCS 2017

Pick one influential example from the literature: PtrSplit'”

Language | Additional Goals of Automation

o Tyafiisi Automation Policy Language Type Separation Analysis
Policy Definition Method Specific | Performance | Interface Safety

- . Subject Selection
cmse' |Annotations | Placement Rules | Granularity Approach J ‘

Semi-automated tool
for safeboxing code

- L

PtrSplit* [169] ‘) | o | O Function Static Code-centric o O O

97

(1) Liu et al., PtrSplit: Supporting General Pointers in Automatic Program Partitioning, CCS 2017

Pick one influential example from the literature: PtrSplit'”

Language | Additional Goals of Automation
Specific | Performance | Interface Safety

Policy Definition Method Automation Policy Language Type Separation Analysis

- . Subject Selection
cmse' |Annotations | Placement Rules | Granularity Approach J ‘

Semi-automated tool
for safeboxing code

- L

PtrSplit* [169] ‘) | o | O Function Static Code-centric o O O

(Annotate valuable data,

PtrSplit then automatically
cuts the program to
\safebox them y

(1) Liu et al., PtrSplit: Supporting General Pointers in Automatic Program Partitioning, CCS 2017

Pick one influential example from the literature: PtrSplit'”

Automation Policy Language Type Separation Analysis
cmse' |Annotations | Placement Rules | Granularity Approach

Language | Additional Goals of Automation
Specific | Performance | Interface Safety

Policy Definition Method Subject Selection

The program is then

Semi-automated tool split at arbitrary
for safeboxing code function boundaries
PtrSplit* [169] ‘) | o | O | Function | Static I Code-centric o O O

(Annotate valuable data,

PtrSplit then automatically
cuts the program to
\safebox them y

(1) Liu et al., PtrSplit: Supporting General Pointers in Automatic Program Partitioning, CCS 2017

Pick one influential example from the literature: PtrSplit'”

Language | Additional Goals of Automation

o Tyafiisi Automation Policy Language Type Separation Analysis
Policy Definition Method Specific | Performance | Interface Safety

- . Subject Selection
cmse' |Annotations | Placement Rules | Granularity Approach J

The program is then

Semi-automated tool split at arbitrary
for safeboxing code function boundaries
PtrSplit* [169] ‘) | o | O | Function | Static I Code-centric | o I O O
(Annotate valuable data, The split is done statically by h
PtrSplit then automatically the tool, i.e., just by looking at
cuts the program to the code (vs. a dynamic tool
\safebox them y Qhat would run the program))

Open Problem in Policy Definition Methods

Open Problem in Policy Definition Methods

Automated Policy Definition Methods trade off
security and/or performance for developer effort.

Open Problem in Policy Definition Methods

Automated Policy Definition Methods trade off [
. HTTP | FastCGI |
security and/or performance for developer effort. parser | | Module |
Take our example: A T
LLibrary, | T I

(Fictive monolithic program)

Open Problem in Policy Definition Methods

Automated Policy Definition Methods trade off

security and/or performance for developer effort.

Take our example: our split cuts a hot path.

' Libr
| I

HT
Par

SS

TP U;? FastCGI |
>er_

L
ar

——————

Module
Cuts a hot path

(Fictive

m

onolithic program)

Network

Open Problem in Policy Definition Methods

Automated Policy Definition Methods trade off
security and/or performance for developer effort.

Take our example: our split cuts a hot path. We can
spend more developer time to look attentively and
refine our cut to avoid the critical code paths.

[—=— ==
HT'L:I:::} FastCGI |
Pan Module '
r =)= ——
I SSL I
13 l
Rl LA

(Fictivelmonolithic program)

Network

Open Problem in Policy Definition Methods

Automated Policy Definition Methods trade off
security and/or performance for developer effort.

Take our example: our split cuts a hot path. We can
spend more developer time to look attentively and
refine our cut to avoid the critical code paths.

Automated methods struggle to do that since the
semantics of programs fundamentally cannot be

Pan Module '
r =)= ——
[SSL I
13 l
Rl LA

(Fictivelmonolithic program)

Network

ca pturEd automatically. [mnon-tﬁvia/ semantic

properties of programs are undecidab/e"J

Open Problem in Policy Definition Methods

Automated Policy Definition Methods trade off
security and/or performance for developer effort.

Take our example: our split cuts a hot path. We can
spend more developer time to look attentively and
refine our cut to avoid the critical code paths.

Automated methods struggle to do that since the
semantics of programs fundamentally cannot be

Pan Module '
r =)= ——
[SSL I
13 l
Rl LA

(Fictivelmonolithic program)

Network

ca pturEd automatically. [mnon-tﬁvia/ semantic

properties of programs are undecidab/e"J

Which trade-offs are desirable in practice?

Bigger Picture of Compartmentalization

Propose to view compartmentalization as 3 problems: ?

~ B

1. How to determine the right policy to enforce?
o Done with a policy definition method |

2. How to integrate the notion of compartmentalization

@ policies in software / programming models / idioms? /}\
o Done with a compartmentalization abstraction a

v

O

3. How to enforce policies at runtime?
o Done with a compartmentalization mechanism ‘

Problem #2
How to implement policies?

Having defined a policy, we need to express it in the program.
Developers perform this using programming abstractions.

Problem #2
How to implement policies?

Having defined a policy, we need to express it in the program.
Developers perform this using programming abstractions.

Historically, people have done this with processes (=the process abstraction).

Problem #2
How to implement policies?

Having defined a policy, we need to express it in the program.
Developers perform this using programming abstractions.

Historically, people have done this with processes (=the process abstraction).

}';3_ _____ f—— - Example: assume we sandbox the HTTP parser.
HTTP 1 | FastCGI |

I Parser : I Module :

[—— ===~ [———==" [—— ===~

I SSL I I i HTTP 1 __ HTTP

! L_iEr‘_aEy_: :_ B '_‘_'_ _: :_ Parser : Parser

(Fictive monolithic program)

Problem #2
How to implement policies?

Having defined a policy, we need to express it in the program.
Developers perform this using programming abstractions.

Historically, people have done this with processes (=the process abstraction).

}';3_ _____ f—— - Example: assume we sandbox the HTTP parser.
HTTP | | FastCGI |

I Parser : I Module : fork ()

LoossLo o, . HTTP 1 ___ [HTTP

! L_iEr‘_aEy_: :_ B '_‘_'_ _: :_ Parser : Parser

(Fictive monolithic program)

Problem #2
How to implement policies?

Having defined a policy, we need to express it in the program.
Developers perform this using programming abstractions.

Historically, people have done this with processes (=the process abstraction).

}';3_ _____ A Example: assume we sandbox the HTTP parser.
HTTP 1 | FastCGI |
| |
| EFGER g HeTUlE fork() Setup IPC...
LossLo0 o, . HTTP 1 ___ [HTTP
| Library | ! "7 _: | Parser : Parser

(Fictive monolithic program)

Problem #2
How to implement policies?

Having defined a policy, we need to express it in the program.
Developers perform this using programming abstractions.

Historically, people have done this with processes (=the process abstraction).

}';3_ _____ S Example: assume we sandbox the HTTP parser.
HTTP 1 | FastCGI |

| | |

i PEIFSER g Veells fork() SetupIPC... chroot()

possLootog . HTTP 1 __, [wTTP

| Library | ! "7 _: | Parser : Parser

(Fictive monolithic program)

Problem #2
How to implement policies?

Having defined a policy, we need to express it in the program.
Developers perform this using programming abstractions.

Historically, people have done this with processes (=the process abstraction).

}';3_ _____ S Example: assume we sandbox the HTTP parser.
HTTP 1 | FastCGI |

| | |

i PEIFSER g Veells fork() SetupIPC... chroot()

possLootog . HTTP 1 __, [wTTP

| Library | ! "7 _: | Parser : Parser

(Fictive monolithic program) setuid()

Problem #2
How to implement policies?

Having defined a policy, we need to express it in the program.
Developers perform this using programming abstractions.

Historically, people have done this with processes (=the process abstraction).

}';3_ _____ S Example: assume we sandbox the HTTP parser.
HTTP 1 | FastCGI |

| | |

i PEIFSER g Veells fork() SetupIPC... chroot()

possLootog . HTTP 1 __, [wTTP

| Library | ! "7 _: | Parser : Parser

(Fictive monolithic program) setuid() seccomp()

Problem #2
How to implement policies?

Having defined a policy, we need to express it in the program.
Developers perform this using programming abstractions.

Historically, people have done this with processes (=the process abstraction).

l';ﬁ_ _____ f—— - Example: assume we sandbox the HTTP parser.
HTTP | | FastCGI |
I ! !
, Parser , | Module , fork() SetupIPC... chroot()
—————— === — e mm = =y
. ossL1 | Cwtte [wrTe
! L_iEr‘_aEy_: :_ B '_‘_'_ _: :_ Parser : Parser

(Fictive monolithic program) setuid() seccomp()

This is still the most common way to do it today.

Compartmentalization Abstractions

Programming abstractions for compartmentalization are also a
very active research area:

Minimize developer effort (intuitive, easy to use) Making the most of a specific
Leverage domain-specific knowledge (threat model, deployment) enforcement mechanism
Maximize security properties that can be achieved Support generic mechanisms

Compartmentalization Abstractions

Programming abstractions for compartmentalization are also a
very active research area

Minimize developer effort (intuitive, easy to use)

Leverage domain-specific knowledge (threat model, deployment) €enforcement mechanism
Support generic mechanisms

Making the most of a specific

Maximize security properties that can be achieved

TABLE 2: Taxonomy of Compartmentalization Abstractions. Targeis: User, Kernel, Hypervisor. Semantics: Synchronous,
Asynchronous, sHared Memory, MESsage passing. S+.4: the abstraction exhibits both & and .A semantics. Properties:
confidentiality, Integrity, Availability, Recompartmentalization. Mechanism-independent abstractions are labeled with @,
. Abstraction Properiies | exign Boimd
Abstraction Subject Selection ! lf—.'yTyT{ iy Derign Boumd
| Code-cenine D0 Virtual Machine (EPT)
Coe-ceninic
Code-cenric e
TODOR 1211 Code-centric) 7
CAPACITY (109] Cande—centnic D0 T ARM PAC + MTE
v 4T | Code-cenmic . e .]
Arbiter 2411 Data-cemric L] a
Salus 11291 Data-centric .. : SoK: Softw
3 Light-Weight Conteats (LwCs) 1 T Hyord Page Table” ftware Compartmentalizatiop
5 FOSIX Processes (and carlicr instances) Hybrid . e Hugo Les
H SOAAP 1 I . e e U U0 L™, N D
i SORAT i Fytnd 2 ele The Universiy of B Comiy Ty f“"““" David Chisaait, ey oy,
Cher0S (6] | Code et —| oy |y | TR compreat | 8 [& S Skt 1 g
Microkemel Servers (1, | Cade-ceniric Any MES | Ulk-component | @ | @ wallr componenc ncthesier
w1 1 | Code-centic 5 SHM . s ‘"“;':w il f68), st 21,
ek Codeecertiic |5 | s (I s s, b SIS A ey conping e OPSISSH [198) s
Tade-centnic E SN v . e 4..\.,\ e comppre ol PSearch efforts e i e 13 3y o, Y s |72
mparinen st e s (62, 149, 174, 200, 3 Wuﬂ«nf«v.
Code-ceninie |5 | sin iLibrary g practice, Thy Sot secrets 115717y - 228) colsing
Code-conmic | & | sAM Any [@ xing e S 0 10 b iy chia ks 1 % dow sacks oy
Hybrid A sam Tunctio ey i iy A incons 2100 Broviding e S 15715
Tode-conme | S+ A | sant Kcomp . . Toe the syu i, o PO © Jongstunding mm,,.u Py
5 ,,.,l,,,,,,.,,”‘ln s Comparison, and dipee *Mmum cffectiveness jn gepprs P the P
3 | Code-cenine |~ 5| sant Funcion | @ : R i e seption "m,w.,,;;” s oy e
S5 coommren 8o T6 18 5 T T w.‘,:.',‘.xt e
= ™ 00 e nm::m;:;.:;.‘.:n.. hlunanM “\vmﬁfk"]{f,’v M.‘mn won & '(wr‘»\mn;-’:v‘ﬂvlng
.le b e L PO S
. | Code-centric K SHM ‘::::'-w ,,w\mm’ o, 133 oty (65,3, 75 5335
d 7 3 Code-cenine | S| wEs slele -m,..a,./,mm.u.d el o, comparg. Erowi i “"*""Smm. ot Wbt it
| oy et b wpart. Ty ey by liraris, g
TTCH (i 1951 Hybrid o T Funciion . i, el og e n./...rxum o pprares s ssea “""’“"“M'wu:Jv.." o brad o '"wux:»H ~
e e 1) Lefeuvre et al., SoK: Software
— < BT N A T B ot hMm...‘:‘-mmrm.w...(.m.(,l“:ruuu MWM'y *’C\»:\I:md(lmmw;ll:wuu\:v “""m o 3 o .
 [LVDs 7 KSpiit s | Codecennc |5 | wes comp: . e 'n-.mlrunmtm Tl s 0D D et g e 0. 231, st of e bt
XETLXFT 02 Hybrd T SN | Kcomponent @ ® . ST acae of comparpen, P 0 Wstoricat s S s ot (ot (188 232) 4 e . .
A Hexer 11 Do centric 5 S| Per VM domain | @ | @ ek ot el s mh.u..,m..ﬂ.,r.». Jikely part of the propre w‘lmu”::my ;m\,,m\,(ek or Com a r_tme nta I |Zat|0n S& P 20 25
T | Shreds ot Coddeconmie | & | sum Any .. 7 1. Introduction e O o gy 1}‘1‘2:1”‘”“.("”" p ’
Pivwan | Codecenme |5 | s .. st s S o s o
e Privirans | Code-cenmic |5 | wes ole wan i gl e, ,,‘”"ww % udenandig g ‘.,,
HE S o1 e S| . . T'wmw/f oo o ST & 5 of o s e s jj,“““’* i ‘wwr‘hw'f,u'“‘ﬂﬂl" o
12| v [Clamding ERET ol . ;1",' 'urmn.v,\rf‘;,ls‘:"’"(’Wh\m tae e mww“,w’i'!.if,’,“m feing o conn
3 Mandering (1w 170/ s WES .. ¥ “""’”*‘ ““’“ oy e p,,\,,‘jy,w, koo :“”“‘““‘thu h,,.‘m:':m"lun” et s
4 3 ole : h o o “\
K| Nesied Kemel (1] Code-centric | & EL] Funcion | @ @ ige Table w:m'; f;’ y ey Yt Q::vlv:‘ww.,mﬂ iy 1 19
* The abstraction could plug onio any intra-AS mechanism, though the paper or documentation elaims reliance on a particular one. of wort “‘V‘“"w ..W,‘,\ o » e o M \‘"pn e ropose .
and separation. e W[‘J 0. comes s i s ""“ “""P“"wmmH/.mn Priersand
G e s 5 o .m,,\:.a’:'.;:,:::.t:“" omy o o, Mokl

COMBarter:

Target , . , Semantics Abstraction Properties Interface i
Class U/K?HV Abstraction Subject Selection |-z [ASSIGN | Gramularity [C] 1p| AR Safity gej\ffi’éhi;?:nf
Virtines [242] Code-centric S MES Function [AN REOREG) O Virtual Machine (EPT)
ACES [90] Code-centric S SHM Function e/@|0O|0O O a’
SeCage [171] Code-centric S SHM Function [BN REGRN® @] o’
HODOR 124 Code-centric S SHM Library IK XEORE® @) %]
CAPACITY [105] Code-centric S SHM Any el@e[0O|0O o* ARM PAC + MTE
U Jif 2611 Code-centric S+A MES Any ® @ OO @ 7]
Arbiter [241] Data-centric S SHM Function [BN RECRNe @] a”
5 Secure Memory Views (SMVs) [128] Data-centric S SHM Function’ e @ OO @) o
§ Salus [226] Data-centric S SHM Function e e | O O @
'é’ Light-Weight Contexts (LwCs) [167] Hybrid S SHM Function' e |0 O Page Table”
3 POSIX Processes (and earlier instances) [93] Hybrid Any Any Any AK JEORE®) O Page Table
g SOAAP 1171 Hybrid S SHM Any e|l@e|O]|O o? IZ]
= libMPK [190] Hybrid S SHM Any e @O O O Protection Keys
CheriOS [108] Code-centric Any Any U/K-component | @ | @ | O | O O CHERI
Microkernel Servers [106], [...] Code-centric Any MES U/K-component | @ | @ | O | O O IZH
Mutable Protection Domains (MPDs) [191, 192] Code-centric S SHM U/K-component | @ | @ | O | @ @] °
U+K [RedLeaf [184] Code-centric S SHM U/K-component | @ | @ | @ | O @) Safe Languages
CubicleOS [211] Code-centric S SHM pLibrary ® 0O | O O Protection Keys
FlexOS [161] Code-centric S SHM pLibrary IK KSR S O %]
XMP [196] Code-centric S SHM Any ® ®@|O|O O [Z]
Monza [35] Hybrid A SHM Function' Olelolo [@) IZH
VirtuOS [186] Code-centric S+ A SHM K-component (@ (@ (@ | O O Virtual Machine (EPT)
K HAKC 11731 Code-centric S SHM Function e @O0 [@) ARM PAC + MTE
LibrettOS 11871 Code-centric S SHM K-component @ | @ | @ | @® O ZH
Cali [65] Code-centric S SHM Library e e 0|0 O o
CompARTist [132] Code-centric S MES Library [BN RECRNe) @] ZH
U Enclosure [111] Code-centric S SHM Package ® O OO O [%}
I Google Sandboxed API (SAPI) [22) Code-centric S MES Function [AN BN BNe) O 7
=2 RLBox / uSWITCH [181, 195] Hybrid S SHM Function el®@ O[O) 7]
§ Wedge [70] Hybrid S SHM Function ele| OO @) 28
U+K | CompartOS (55 Code-centric S SHM Linkage Unit (@ | @ @ | O [@) CHERI
" LVDs / KSplit [133, 185] Code-centric S MES K-component (@ | @ |O | O O IZH
XFI/LXFI [107. 172] Hybrid S SHM K-component (@ | @[O[O [SFI
HV Nexen [221] Data-centric S SHM Per-VM domain | @ | @ | O | O @] Page Table®
U Shreds (871 Code-centric S SHM Any [2N RNGRE®) of o
Privman [147] Code-centric S MES Function e e O|O O Page Table”
o | Privtrans (73] Code-centric S MES Function @ e O|0O O Page Table’
S '§ Swift (9] Code-centric S+ A MES Any e/@|O|O [1%}
%{ = Y Glamdring [165] Code-centric S MES Function e e 0|0 [IZH
“ § PtrSplit / Program Mandering [169, 170] Code-centric S MES Function ® 0 OO o o
Q DataShield [77] Hybrid S SHM Any ® 0 OO o Bounds Checking
ERIM [232] Hybrid S SHM Any ®e/®@ O[O O Protection Keys
K Nested Kernel [94] Code-centric S SHM Function ®oe/@|O|O O Page Table

T Inherited from thread-like semantics, > from process-like semantics, * from the Nested Kernel, * The PDM does (to a certain extent).

5 The abstraction could plug onto any intra-AS mechanism, though the paper or documentation claims reliance on a particular one.

120

Names of the abstractions we consider

Characteristics we included in the taxonomy

AN
Target , . , Semantics Abstraction Properties Interface Desi
Class U/K/&HV r\\b‘stractlon Subject Selection CRLL [ASSTGN Granularity o] IP| Sl fJe‘ . m@i 7’3
Virines v/ Codecenttic | S | MEs Function _[@ @]O] O] O [vital\ _SNEPD
ACES po; N/ Code-centric S SHM Function I EE O 2
SeCage [171] Code-centric S SHM Function ®@ e OO @) @’
HODOR [124] Code-centric S SHM Library IK KON E® @) %]
CAPACITY [105] Code-centric S SHM Any el@e[0O|0O o ARM PAC + MTE
U Jif 613 Code-centric S+A MES Any ® @ OO O 7]
Arbiter [241] Data-centric S SHM Function' e @00 O a’
- Secure Memory Views (SMVs) [128] Data-centric S SHM Function' el@®@ O|0O @) o’
§ Salus [226] Data-centric S SHM Function’ e e |0 O IZH
.‘Q.:’ Light-Weight Contexts (LwCs) [167] Hybrid S SHM Function' e ®|0O|O O Page Table”
3 POSIX Processes (and earlier instances) [93] Hybrid Any Any Any /@@ O[O O Page Table
g SOAAP (1171 Hybrid S SHM Any NIOEE o? IZ]
= 1ibMPK [190] Hybrid S SHM Any ®e/@®@/O|O O Protection Keys
CheriOS [108) Code-centric Any Any U/K-component | @ (@ | O | O O CHERI
Microkernel Servers [106], [...] Code-centric Any MES U/K-component | @ | @ | O | O O IZH
Mutable Protection Domains (MPDs) [191, 192 Code-centric S SHM U/K-component | @ | @ | O | @ O °
U+K ['RedLeaf [184] Code-centric S SHM U/K-component | @ [@ [@ [O @) Safe Languages
CubicleOS [211] Code-centric S SHM pLibrary ® 0O | O O Protection Keys
FlexOS [161] Code-centric S SHM pLibrary CIK KGR S O %}
XMP [196] Code-centric S SHM Any ® ® OO O 19
Monza [35] Hybrid A SHM Function' oOlelol|o @) 2N
VirtuOS [186] Code-centric S+ A SHM K-component (@ (@ (@ | O O Virtual Machine (EPT)
K HAKC [173] Code-centric S SHM Function e ®(O|O [@) ARM PAC + MTE
LibrettOS [187] Code-centric S SHM K-component @ @ @ | @ O °
Cali [65] Code-centric S SHM Library ®@ e 0|0 O o
CompARTist [132] Code-centric S MES Library e @00 O a°
U Enclosure [111] Code-centric S SHM Package ®(O OO O [%}
= Google Sandboxed API (SAPI) [22] Code-centric S MES Function [AN BN BEe) O IZH
§ RLBox / £SWITCH [181, 195] Hybrid S SHM Function el®@ O[O) 7]
S Wedge [70] Hybrid S SHM Function ele| 0|0 @) °
U+K | CompartOS [55] Code-centric S SHM Linkage Unit (@ (@ |[@® | O O CHERI
= LVDs / KSplit 1133, 185] Code-centric S MES K-component | @ | @ |O | O @) IZH
XFI/LXFI [107, 172] Hybrid S SHM K-component (@ [@[O[O [SFI
HV Nexen [221] Data-centric S SHM Per-VM domain | @ | @ | O | O @) Page Table®
U Shreds (871 Code-centric S SHM Any ® e 0|0 ot a°
Privman [147) Code-centric S MES Function ® ® O|O O Page Table”
o | Privtrans (73] Code-centric S MES Function ® e 0|0 O Page Table”
£ '§ Swift [89] Code-centric S+ A MES Any e/@|OO [1%}
% B U Glamdring [165] Code-centric S MES Function ® ® OO) IZH
= § PtrSplit / Program Mandering [169, 170] Code-centric S MES Function ® 0 OO o IZH
Q DataShield [77] Hybrid S SHM Any ® 0 OO o° Bounds Checking
ERIM [232] Hybrid S SHM Any /@ O[O O Protection Keys
K Nested Kernel [94] Code-centric S SHM Function ®e/@®@|[O|O O Page Table

I Inherited from thread-like semantics, > from process-like semantics, * from the Nested Kernel, * The PDM does (to a certain extent).
5 The abstraction could plug onto any intra-AS mechanism, though the paper or documentation claims reliance on a particular one.

121

Names of the abstractions we consider

Characteristics we included in the taxonomy

AN
Target , . , Semantics Abstraction Properties Interface Desi
Class U/K/&HV r\\b‘stractlon Subject Selection CRLL [ASSTGN Granularity o] IP| Sl fJe‘ . m@i 7’3
Virines v/ Codecenttic | S | MEs Function _[@ @]O] O] O [vital\ _SNEPD
ACES po; N/ Code-centric S SHM Function I EE O 2
SeCage [171] Code-centric S SHM Function ®@ e OO @) @’
HODOR [124] Code-centric S SHM Library IK KON E® @) %]
CAPACITY [105] Code-centric S SHM Any el@e[0O|0O o ARM PAC + MTE
U Jif 613 Code-centric S+A MES Any ® @ OO O 7]
Arbiter [241] Data-centric S SHM Function' e @00 O a’
- Secure Memory Views (SMVs) [128] Data-centric S SHM Function' el@®@ O|0O @) o’
§ Salus [226] Data-centric S SHM Function’ e e |0 O IZH
.‘Q.:’ TP VR s VA= = g Hybrid S SHM Function' e @@ OO O Page Table”
3 Hybrid Any Any Any e OO O Page Table
g < Hybrid S SHM Any ele|O]|0O o* 2
= 1ibMPK [190] Hybrid S SHM Any ®e/@®@/O|O O Protection Keys
CheriOS [108) Code-centric Any Any U/K-component | @ (@ | O | O O CHERI
Microkernel Servers [106], [...] Code-centric Any MES U/K-component | @ | @ | O | O O IZH
Mutable Protection Domains (MPDs) [191, 192 Code-centric S SHM U/K-component | @ | @ | O | @ O °
U+K ['RedLeaf [184] Code-centric S SHM U/K-component | @ [@ [@ [O @) Safe Languages
CubicleOS [211] Code-centric S SHM pLibrary ® 0O | O O Protection Keys
FlexOS [161] Code-centric S SHM pLibrary CIK KGR S O %}
XMP [196] Code-centric S SHM Any ® ® OO O 19
Monza [35] Hybrid A SHM Function' oOlelol|o @) 2N
VirtuOS [186] Code-centric S+ A SHM K-component (@ (@ (@ | O O Virtual Machine (EPT)
K HAKC [173] Code-centric S SHM Function e ®(O|O [@) ARM PAC + MTE
LibrettOS [187] Code-centric S SHM K-component @ @ @ | @ O °
Cali [65] Code-centric S SHM Library ®@ e 0|0 O o
CompARTist [132] Code-centric S MES Library e @00 O a°
U Enclosure [111] Code-centric S SHM Package ®(O OO O [%}
= Google Sandboxed API (SAPI) [22] Code-centric S MES Function [AN BN BEe) O IZH
§ RLBox / £SWITCH [181, 195] Hybrid S SHM Function el®@ O[O) 7]
S Wedge [70] Hybrid S SHM Function ele| 0|0 @) °
U+K | CompartOS [55] Code-centric S SHM Linkage Unit (@ (@ |[@® | O O CHERI
= LVDs / KSplit 1133, 185] Code-centric S MES K-component | @ | @ |O | O @) IZH
XFI/LXFI [107, 172] Hybrid S SHM K-component (@ [@[O[O [SFI
HV Nexen [221] Data-centric S SHM Per-VM domain | @ | @ | O | O @) Page Table®
U Shreds (871 Code-centric S SHM Any ® e 0|0 ot a°
Privman [147) Code-centric S MES Function ® ® O|O O Page Table”
o | Privtrans (73] Code-centric S MES Function ® e 0|0 O Page Table”
£ '§ Swift [89] Code-centric S+ A MES Any e/@|OO [1%}
% B U Glamdring [165] Code-centric S MES Function ® ® OO) IZH
= § PtrSplit / Program Mandering [169, 170] Code-centric S MES Function ® 0 OO o IZH
Q DataShield [77] Hybrid S SHM Any ® 0 OO o° Bounds Checking
ERIM [232] Hybrid S SHM Any /@ O[O O Protection Keys
K Nested Kernel [94] Code-centric S SHM Function ®e/@®@|[O|O O Page Table

I Inherited from thread-like semantics, > from process-like semantics, * from the Nested Kernel, * The PDM does (to a certain extent).
5 The abstraction could plug onto any intra-AS mechanism, though the paper or documentation claims reliance on a particular one.

122

This talk: present a few interesting aspects, full discussion in the paper

Target , . , Semantics Abstraction Properties Interface Si
Class U/K?HV Abstraction Subject Selection |-z [ASSIGN | Gramularity [C] 1p| AR Saf{:ty Ze;f[i’éhi%:nf
Virtines [242] Code-centric S MES Function [AN REOREG) O Virtual Machine (EPT)
ACES [90] Code-centric S SHM Function e/@|0O|0O O a’
SeCage [171] Code-centric S SHM Function [BN REGRN® @] o’
HODOR 124 Code-centric S SHM Library IK XEORE® @) %]
CAPACITY [105] Code-centric S SHM Any el@e[0O|0O o* ARM PAC + MTE
U Jif 2611 Code-centric S+A MES Any ® @ OO @ 7]
Arbiter [241] Data-centric S SHM Function [BN RECRNe @] a”
s Secure Memory Views (SMVs) [128] Data-centric S SHM Function’ ele®@ OO @) °
§ Salus [226] Data-centric S SHM Function e e | O O @
'é’ Light-Weight Contexts (LwCs) [167] Hybrid S SHM Function' e |0 O Page Table”
3 POSIX Processes (and earlier instances) [93] Hybrid Any Any Any AK JEORE®) O Page Table
g SOAAP 1171 Hybrid S SHM Any e|l@e|O]|O o? IZ]
= libMPK [190] Hybrid S SHM Any e @O O O Protection Keys
CheriOS [108] Code-centric Any Any U/K-component | @ | @ | O | O O CHERI
Microkernel Servers [106], [...] Code-centric Any MES U/K-component | @ | @ | O | O O IZH
Mutable Protection Domains (MPDs) [191, 192] Code-centric S SHM U/K-component | @ | @ | O | @ @] °
U+K [RedLeaf [184] Code-centric S SHM U/K-component | @ | @ | @ | O @) Safe Languages
CubicleOS [211] Code-centric S SHM pLibrary ® 0O | O O Protection Keys
FlexOS [161] Code-centric S SHM pLibrary IK KSR S O %]
XMP [196] Code-centric S SHM Any ® ®@|O|O O [Z]
Monza [35] Hybrid A SHM Function' Olelolo [@) IZH
VirtuOS [186] Code-centric S+ A SHM K-component (@ (@ (@ | O O Virtual Machine (EPT)
K HAKC 11731 Code-centric S SHM Function e @O0 [@) ARM PAC + MTE
LibrettOS 11871 Code-centric S SHM K-component @ | @ | @ | @® O ZH
Cali [65] Code-centric S SHM Library e e 0|0 O o
CompARTist [132] Code-centric S MES Library [BN RECRNe) @] ZH
U Enclosure [111] Code-centric S SHM Package ® O OO O [%}
I Google Sandboxed API (SAPI) [22) Code-centric S MES Function [AN BN BNe) O 7
=2 RLBox / uSWITCH [181, 195] Hybrid S SHM Function el®@ O[O) 7]
§ Wedge [70] Hybrid S SHM Function ele| OO @) 28
U+K | CompartOS (55 Code-centric S SHM Linkage Unit (@ | @ @ | O [@) CHERI
" LVDs / KSplit [133, 185] Code-centric S MES K-component (@ | @ |O | O O IZH
XFI/LXFI [107. 172] Hybrid S SHM K-component (@ | @[O[O [SFI
HV Nexen [221] Data-centric S SHM Per-VM domain | @ | @ | O | O @] Page Table”
U Shreds (871 Code-centric S SHM Any [2N RNGRE®) of o
Privman [147] Code-centric S MES Function e e O|O O Page Table”
o | Privtrans (73] Code-centric S MES Function @ e O|0O O Page Table’
S '§ Swift (9] Code-centric S+ A MES Any e/@|O|O [1%}
%{ = Y Glamdring [165] Code-centric S MES Function e e 0|0 [IZH
“ § PtrSplit / Program Mandering [169, 170] Code-centric S MES Function ® 0 OO o o
Q DataShield [77] Hybrid S SHM Any ® 0 OO o Bounds Checking
ERIM [232] Hybrid S SHM Any ®e/®@ O[O O Protection Keys
K Nested Kernel [94] Code-centric S SHM Function ®oe/@|O|O O Page Table

T Inherited from thread-like semantics, > from process-like semantics, * from the Nested Kernel, * The PDM does (to a certain extent).
5 The abstraction could plug onto any intra-AS mechanism, though the paper or documentation claims reliance on a particular one.

L]
—

123

Abstractions often specialize on a particular threat model

For sandboxing
(libraries, drivers)

For safeboxing
(crypto keys,
privileged code)

Target , . , Semantics Abstraction Properties Interface
Class U/K?HV Abstraction Subject Selection |-z [ASSIGN | Gramularity [C] 1p| AR Saf{:zy
Virtines [242] Code-centric S MES Function [AN RNGRNG) O
ACES 90 Code-centric S SHM Function [AN REORNG) O
SeCage [171] Code-centric S SHM Function @/ ® 0|0 O 4
HODOR [124] Code-centric S SHM Library e ®e|O|O o
CAPACITY [105] Code-centric S SHM Any el@e[0O|0O o*
U Jif 2611 Code-centric S+A MES Any ® @ OO [
Arbiter [241] Data-centric S SHM Function e @00 O
- Secure Memory Views (SMVs) [128] Data-centric S SHM Function’ [AN REORNS) O
§ Salus [226] Data-centric S SHM Function e e | O O
'é’ Light-Weight Contexts (LwCs) [167] Hybrid S SHM Function' e |0 O Page Table”
3 POSIX Processes (and earlier instances) [93] Hybrid Any Any Any AK JEORE®) O Page Table
g SOAAP 1171 Hybrid S SHM Any e|/@e|0O|0O of IZ]
= libMPK [190] Hybrid S SHM Any e @O O O Protection Keys
CheriOS [108] Code-centric Any Any U/K-component | @ | @ | O | O O CHERI
Microkernel Servers [106], [...] Code-centric Any MES U/K-component | @ | @ | O | O O IZH
Mutable Protection Domains (MPDs) [191, 192] Code-centric S SHM U/K-component | @ | @ | O | @ @] °
U+K [RedLeaf [184] Code-centric S SHM U/K-component | @ | @ | @ | O @) Safe Languages
CubicleOS [211] Code-centric S SHM pLibrary ® 0O | O O Protection Keys
FlexOS [161] Code-centric S SHM pLibrary IK KSR S O %]
XMP [196] Code-centric S SHM Any ® ®@|O|O O [Z]
Monza [35] Hybrid A SHM Function' Olelolo [@) IZH
VirtuOS [186] Code-centric S+ A SHM K-component (@ (@ (@ | O O Virtual Machine (EPT)
K HAKC 11731 Code-centric S SHM Function e @O0 [@) ARM PAC + MTE
LibrettOS (1871 Code-centric S SHM K-component @ | @ | @ | @® O IZH
Cali [65] Code-centric S SHM Library ®@ e 0|0 O o
CompARTist [132] Code-centric S MES Library e @00 O a°
U Enclosure [111] Code-centric S SHM Package ®(O OO O [%}
= Google Sandboxed API (SAPI) [22] Code-centric S MES Function [AN BN BEe) O o’
L § valzox / uSWITCH [181, 195] gyl;rlg g SHM iunct?onl : : 8 8 ; g}
S edge [70] Ti SHM unction : —
“ U+K ComiartOS [55] Code}icentric S SHM Linkage Unit (@ (@ @ | O O CHERI What is Software Compartmentalization?
= LVDs / KSplit 1133, 185] Code-centric S MES K-component ® O OO @) 2N Software compartmentalization can target different trust models
XFI/LXFI (107, 172] Hybrid S SHM K-component | @ @ | O[O o SFI [tsoltion Boundary i
HV Nexen [221] Data-centric S SHM |[Per-VM domain (@ | @ | O | O O Page Table’ I - "““‘“’““ o
U Shreds (871 Code-centric) SHM Any ® e 0|0 ot a° i A v f
Privman [147] Code-centric S MES Function ® e 0|0 O Page Table” S]
o | Privtrans (73] Code-centric S MES Function ® e 0|0 O Page Table’ Sandbox: component isolatedto Safebax: component isolatedto Mutual distrust: components
S '§ Swift [89] Code-centric S+A MES Any e/@|(O[O [7] provectthe restoffia getant.. | groesstbfrom oders dstrusteach other
5 = Y Glamdring [165] Code-centric IS] MES Function e @O0 ® IZH Alpameebaiimadl Osyie ool
= § PtrSplit / Program Mandering [169, 170] Code-centric S MES Function ® 0 OO o o’
Q DataShield [77] Hybrid S SHM Any ® 0 OO o° Bounds Checking
ERIM [232] Hybrid S SHM Any /@ O[O O Protection Keys
K Nested Kernel [94] Code-centric S SHM Function e @|/O|O [@) Page Table

I Inherited from thread-like semantics, > from process-like semantics, * from the Nested Kernel, * The PDM does (to a certain extent).
5 The abstraction could plug onto any intra-AS mechanism, though the paper or documentation claims reliance on a particular one.

124

A lot of interest in abstractions for kernel compartmentalization

Target , . , Semantics Abstraction Properties Interface Design Boun
Class U/K/éHV Abstraction Subject Selection |m2rr [ASSIGN | Gramularity [C] 1p| AR Safje‘ty mezg\jfi’;ha%mf
Virtines [242] Code-centric S MES Function [AN REOREG) O Virtual Machine (EPT)
ACES [90] Code-centric S SHM Function e/@|0O|0O O a’
SeCage [171] Code-centric S SHM Function [BN REGRN® @] o’
HODOR 124 Code-centric S SHM Library IK XEORE® @) %]
CAPACITY [105] Code-centric S SHM Any el@e[0O|0O o* ARM PAC + MTE
U Jif 61] Code-centric S+A MES Any ® @ OO @ 7]
Arbiter [241] Data-centric S SHM Function [BN RECRNe @] a”
g \zs) Data-centric S SHM Function’ ele|O]|O O @’
Compartmentalize Datacenic | S | s | Funcion’ [@[®]0[0] © E
167] Hybrid S SHM Function' e |0 O Page Table”
user I s | nd s | nd ke rn el stances) [93] Hybrid Any Any Any ®e|®e| 0|0 O Page Table
Hybrid S SHM Any ele|O]|0O o* 2
tog et h er Hybrid] S SHM Any ®e/®@ 0|0 O Protection Keys
Code-centric Any Any U/K-component | @ (@ | O | O O CHERI
P Microkernel Servers [106], [...] Code-centric Any MES U/K-component | @ | @ | O | O O IZH
Mutable Protection Domains (MPDs) [191, 192] Code-centric S SHM U/K-component | @ | @ | O | @ @) >’
U+K [RedLeaf [184] Code-centric S SHM U/K-component | @ [@ [@ [O @) Safe Languages
CubicleOS [211] Code-centric S SHM pLibrary ® 0O | O O Protection Keys
FlexOS [161] Code-centric S SHM pLibrary CIK KGR S O %}
XMP [196] Code-centric S SHM Any ® @O0 O [Z]
Monza [35] Hybrid A SHM Function' oOlelol|o @) 2N
VirtuOS [186] Code-centric S+ A SHM K-component (@ (@ (@ | O O Virtual Machine (EPT)
K HAKC [173] Code-centric S SHM Function e ®(O|O [@) ARM PAC + MTE
e | LibrettOS 11871 Code-centric S SHM K-component | @ | @ | @ | @ O @’ -
Ke rne I on |] [65] Code-centric S SHM Library e e 0|0 O @u o
«ee BPARTISst [132] Code-centric S MES Library [AN BEoRNS®) O . .
y jlosure [111] Code-centric S SHM Package ® 0 OO O //ThIS Came as a rEVIval Of
Google Sandboxed API (SAPI) (22 Code-centric S MES Function [AN BN BNe) O . .
§ RLBgox / pSWITCH [181, 195] Hybrid S SHM Function [BN REGRN®! [) (‘\ researCh n mICFOkerne/S
§ Wedge [70] Hybrid S SHM Function ele| OO @) S e—
U+K | CompartOS [55] Code-centric S SHM Linkage Unit (@ (@ @ | O [@) CHERI
e LVDs / KSplit [133, 185] Code-centric S MES K-component (@ | @ | O | O O IZH
XFI/LXFI [107. 172] Hybrid S SHM K-component (@ [@[O[O [SFI
HV Nexen [221] Data-centric S SHM Per-VM domain | @ | @ | O | O @) Page Table®
e Code-centric S SHM Any el ® 0|0 of o
. Code-centric S MES Function e e O|O O Page Table”
N O r hy p ervisors Code-centric S MES Function @ e O|0O O Page Table’
S= - e Code-centric S+ A MES Any e/@|O|O [1%}
% = Y Glamdring [165] Code-centric S MES Function e e 0|0 [IZH
“ § PtrSplit / Program Mandering [169, 170] Code-centric S MES Function ® 0 OO o o
Q DataShield [77] Hybrid S SHM Any ® 0 OO o Bounds Checking
ERIM [232] Hybrid S SHM Any ®e/®@ O[O O Protection Keys
K Nested Kernel [94] Code-centric S SHM Function e @|/O|O [@) Page Table

I Inherited from thread-like semantics, > from process-like semantics, * from the Nested Kernel, * The PDM does (to a certain extent).

5 The abstraction could plug onto any intra-AS mechanism, though the paper or documentation claims reliance on a particular one.

125

A lot of interest in rethinking communication and sharing between domains

Target , . , Semantics Abstraction Properties Interface Design Bound
Class | gy Abstraction Subject Selection |- [ASSIGN | Gramularity [C] 1] A]R| Safety to Mechanism
Virtines [242] Code-centric S MES Function [AN REOREG) O Virtual Machine (EPT)
ACES [90] Code-centric S SHM Function e/@|0O|0O O a’
SeCage [171] Code-centric S SHM Function [BN REGRN® @] o’
HODOR 124 Code-centric S SHM Library IK XEORE® @) %]
CAPACITY [105] Code-centric S SHM Any el@e[0O|0O o* ARM PAC + MTE
U Jif 61] Code-centric S+A MES Any ® @ OO @ 7]
Arbiter [241] Data-centric S SHM Function [BN RECRNe @] a”
- Secure Memory Views (SMVs) [12g] Data-centrig S SHM Function” lele@lolo Q o’
N Salus [226] Data-cef h d @’
'é’ Light-Weight Contexts (LwCs) [167] Hybj] Leve ra ge snare memory tO Page Table”
3 POSIX Processes (and earlier instances) [93] Hybi . Page Table
SOAAP i1 ol speed up sharing between o
= 1 [190] ybj rotection Keys
CheriOS [108] Code-cd 1 (1) CHERI
Microkernel Servers [106], [...] Code-ce domal ns VS' message paSSIng IZH
Mutable Protection Domains (MPDs) [191, 192] Code-centric S T~~TU/K-component | @ | @ |O | ® @] °
U+K [RedLeaf [184] Code-centric S SHM U/K-component | @ | @ | @ | O @) Safe Languages
CubicleOS [211] Code-centric S SHM pLibrary ® 0O | O O Protection Keys
FlexOS [161] Code-centric S SHM pLibrary IK KSR S O %]
XMP [196] Code-centric S SHM An ® ®@|O|O O [Z]
Monza [35] Hybrid A SHM Funct)i,(mJ Olelo]o @) IZH
VirtuOS [186] Code-centric S+ A SHM K-component (@ (@ (@ | O O Virtual Machine (EPT)
K HAKC 11731 Code-centric S SHM Function e @O0 [@) ARM PAC + MTE
LibrettOS 11871 Code-centric S SHM K-component @ | @ | @ | @® O ZH
Cali [65] Code-centric S SHM Library e e 0|0 O o
CompARTist [132] Code-centric S MES Library [BN RECRNe) @] ZH
U Enclosure [111] Code-centric L SHM Package ® O OO O [%}
§ Google Sandt S ——— o — ction o/oele | O O IZH
B RLBox / uS . . ° tion ® 0 OO [) g
E weaze | EXPOSIing communication o TeTe oo 0 &
U+K | CompartOS . - kUnit (@ @ | @] O O CHERI
. o/ ks between domains as function onen [@ @0 O] © i
XFI/LXFI [1 ponent (@ (@ | O | O [SFI
n_[neenon | calls (vs. IPCs) to be more intuitive Jomin[@Te o[0T © Page Table’
4] Shreds [87] ny ® @ O|0O of o°
Privman [147] Code-centric S MES Function e e O|O O Page Table”
o | Privtrans (73] Code-centric S MES Function @ e O|0O O Page Table’
L3 Swift (9] Code-centric S+ A MES Any e/@|O|O [1%}
% = Y Glamdring [165] Code-centric S MES Function e e 0|0 [IZH
“ § PtrSplit / Program Mandering [169, 170] Code-centric S MES Function ® 0 OO o o
Q DataShield [77] Hybrid S SHM Any ® 0 OO o Bounds Checking
ERIM [232] Hybrid S SHM Any ®e/®@ O[O O Protection Keys
K Nested Kernel [94] Code-centric S SHM Function ®oe/@|O|O O Page Table

" Inherited from thread-like semantics, > from process-like semantics, * from the Nested Kernel, * The PDM does (to a certain extent).
5 The abstraction could plug onto any intra-AS mechanism, though the paper or documentation claims reliance on a particular one.

126

Interest in abstractions that compose with different isolation mechanisms

T Inherited from thread-like semantics, > from process-like semantics, * from the Nested Kernel, * The PDM does (to a certain extent).
5 The abstraction could plug onto any intra-AS mechanism, though the paper or documentation claims reliance on a particular one.

Target , . , Semantics Abstraction Properties Interface Design Bound
Class U/K/éHV Abstraction Subject Selection |m2rr [ASSIGN | Gramularity [C] 1p| AR Safje‘ty fo Michanz’sm
Virtines [242] Code-centric S MES Function [AN REOREG) O Virtual Machine (EPT)
ACES [90] Code-centric S SHM Function e/@|0O|0O O a”
SeCage [171] Code-centric S SHM Function [BN REGRN® @] @’
HODOR 124 Code-centric S SHM Library IK XEORE® @) %]
CAPACITY [105] Code-centric S SHM Any el@e[0O|0O o* ARM PAC + MTE
U Jif 61] Code-centric S+A MES Any ® @ OO @ 7]
Arbiter [241] Data-centric S SHM Function [BN RECRNe @] a’
- Secure Memory Views (SMVs) [128] Data-centric S SHM Function’ [AN REORNS) O o°
§ Salus [226] Data-centric S SHM Function 2N BNe) .
'é’ Light-Weight Contexts (LwCs) [167] Hybrid S SHM Function’ ® 0 O FOr exam p I e. new GbStrGCtIOnS th Clt
3 POSIX Processes (and earlier instances) [93] Hybrid Asny Any Any o0 O l th .
E SOAAP (117 Hybrid SHM An e f f f
§ libMPK [190] Hibrid S SHM Anz [BN BNe) everage e SPECI ICS O Sa e
CheriOS [108] Code-centric Any Any U/K-component | @ | @ | O H 4
Microkernel Servers [106], [...] Code-centric Any MES U/K-component | @ | @ | O | O /anguag es for ISO/a tlon
Mutable Protection Domains (MPDs) [191, 192] Code-centric S SHM U/K-component | @ | @ | O | @ [@)
U+K [RedLeaf [184] Code-centric S SHM U/K-component | @ | @ | @ | O @) Safe Languages
CubicleOS [211] Code-centric S SHM pLibrary ® 0O | O O Protection Keys
FlexOS [161] Code-centric S SHM pLibrary IK KSR S O %}
XMP [196] Code-centric S SHM Any ® ®@|O|O O [Z]
Monza [35] Hybrid A SHM Function' Olelolo [@) 2N
VirtuOS [186] Code-centric S+ A SHM K-component (@ (@ (@ | O O Virtual Machine (EPT)
K HAKC 11731 Code-centric S SHM Function e @O0 [@) ARM PAC + MTE
LibrettOS 11871 Code-centric S SHM K-component @ | @ | @ | @® O °
Cali [65] Code-centric S SHM Library e e 0|0 O o
CompARTist [132] Code-centric S MES Library [BN RECRNe) @] a°
U Enclosure [111] Code-centric S SHM Package ® O OO O [%}
I Google Sandboxed API (SAPI) [22) Code-centric S MES Function [AN BN BNe) O o’
=2 RLBox / uSWITCH [181, 195] Hybrid S SHM Function el®@ O[O) %]
§ Wedge [70] Hybrid S SHM Function e @00 O a”
U+K | CompartOS (55 Code-centric S SHM Linkage Unit (@ | @ @ | O O CHERI
" LVDs / KSplit [133, 185] Code-centric S MES K-component (@ | @ |O | O O IZH
XFI/LXFI [107. 172] Hybrid S SHM K-component (@ | @[O[O [SFI
HV Nexen [221] Data-centric S SHM Per-VM domain | @ | @ | O | O @] Page Table®
U Shreds (871 Code-centric S SHM Any [2N RNGRE®) of a°
Privman [147] Code-centric S MES Function e e O|O O Page Table”
o | Privtrans (73] Code-centric S MES Function @ e O|0O O Page Table”
L3 Swift (9] Code-centric S+ A MES Any e/@|O|O [1%}
% = Y Glamdring [165] Code-centric S MES Function e e 0|0 [IZH
“ § PtrSplit / Program Mandering [169, 170] Code-centric S MES Function ® 0 OO o o’
Q DataShield [77] Hybrid S SHM Any ® 0 OO o Bounds Checking
ERIM [232] Hybrid S SHM Any ®e/®@ O[O O Protection Keys
K Nested Kernel [94] Code-centric S SHM Function ®oe/@|O|O O Page Table

127

Pick one influential example from the literature: RLBox!

(1) Narayan et al., Retrofitting Fine Grain Isolation in the Firefox Renderer, USENIX Security 2020

Target . . . Semantics Abstraction Properties Interface Design Bound
Clas: Abstract Subject Select . ; '
5 wikiav straction ubject Setechion =maTy | ASSIGN Granularity CITJAJR] Safety to Mechanism
U
2
=~
2
Q
3
S
=
U+K
K
U
g
S RLBox / uSWITCH [181, 195 Hybrid | §] sum | Function [@[@[O][O] @ IZ]
5
1951
U+K
K
HV
U
RS
~
BNEES
SEE
1
=
Q
K

128

Pick one influential example from the literature: RLBox!

Target . . . Semantics Abstraction Properties Interface Design Bound
Class | gy Abstraction Subject Selection |- [ASSIGN | Gramularity [C] 1] A]R| Safety to Mechanism
U
%
2
S
g
=
U+K
Abstraction specialized
for sandboxing untrusted
code (such as libraries)
~
. U
3 RLBox / uSWITCH [181, 195 [Hybrid | § | sum | Function [@[@[O[0O] @ | IZ]
3
U+K
K
HV
U
5|z
~
SIS v
33
=
Q
K

(1) Narayan et al., Retrofitting Fine Grain Isolation in the Firefox Renderer, USENIX Security 2020

Pick one influential example from the literature: RLBox!

Target . . . Semantics Abstraction Properties Interface Design Bound
X Ab: 1 t Sel . ; '
Class UIKIHY bstraction Subject Selection CALL [ASSIGN Granularity CTT[A[R] Safety 10 Mechanism
U
2
=~
2
Q
&
=
U+K

Abstraction specialized
for sandboxing untrusted
code (such as libraries)

Implements cross-compartment
communication with function
calls, which is intuitive

~
" u
3 RLBox / uSWITCH [181, 195 [Hybrid | § | sum | Function [@[@[O[0O] @ | IZ]
B
U+K
K
HY
U
s
~
S| v
g3
=
S
K

(1) Narayan et al., Retrofitting Fine Grain Isolation in the Firefox Renderer, USENIX Security 2020

Pick one influential example from the literature: RLBox!

Target

Class |y fuy

Semantics Abstraction Properties Interface Design Bound

Ab: ti ject Selecti .
bstraction Subject Selection CALL [AGS1GN Granularity CTI[A[R]| Safety to Mechanism

Mutual Distrust

U+K

Abstraction specialized
for sandboxing untrusted
code (such as libraries)

Implements cross-compartment
communication with function

calls, which is intuitive
Y,U)
g RLBox / i WITCH {181, 195 [Hybid [& | siv | Funcion [@|@[O]O] @ | z
< U+K
K Builds on shared memory to speed
up cross-compartment data sharing
3

(1) Narayan et al., Retrofitting Fine Grain Isolation in the Firefox Renderer, USENIX Security 2020

Pick one influential example from the literature: RLBox!

Target

Class |y fuy

Semantics Abstraction Properties Interface Design Bound

Ab: ti ject Selecti .
bstraction Subject Selection CALL | ASSIGN Granularity CTI[A[R]| Safety to Mechanism

Mutual Distrust

U+K

Abstraction specialized
for sandboxing untrusted
code (such as libraries)

Implements cross-compartment
communication with function

-
U

{

Sandbox

calls, which is intuitive

RLBox / SWITCH [181, 195] | Hybrid | § | sum | Function [@[@[O[0O] @ | g |

U+K

HV

Safebox
Dual World
o

K

Builds on shared memory to { Enforces confidentiality and integrity

up cross-compartment data sharing J

(1) Narayan et al., Retrofitting Fine Grain Isolation in the Firefox Renderer, USENIX Security 2020

Pick one influential example from the literature: RLBox!

Target

Class |y fuy

Semantics Abstraction Properties Interface Design Bound

Ab: ti ject Selecti .
bstraction Subject Selection CALL | ASSIGN Granularity CTI[A[R]| Safety to Mechanism

Mutual Distrust

U+K

Abstraction specialized
for sandboxing untrusted
code (such as libraries)

Implements cross-compartment\

-
U

{

Sandbox

communication with function | pges not depend on a specific
calls, which is intuitive enforcement mechanism

RLBox / SWITCH [181, 195] | Hybrid | § | sum | Function [@[@[O[0O] @ | 7] |

U+K

HV

Safebox
Dual World
o

K

Builds on shared memory to { Enforces confidentiality and integrity
up cross-compartment data sharing J

(1) Narayan et al., Retrofitting Fine Grain Isolation in the Firefox Renderer, USENIX Security 2020

Open Problem in Compartmentalization
Abstractions

Hardening compartment interfaces is key to obtaining
strong security properties with compartmentalization

Open Problem in Compartmentalization
Abstractions

Hardening compartment interfaces is key to obtaining
strong security properties with compartmentalization

Example: assume the developer implemented our

boundaries. HTTP ' FastCGI |
Parser I Module :

(=

I =-=== I ==-==

| SSL I I |

. | |

Library 07T !

Open Problem in Compartmentalization
Abstractions

Hardening compartment interfaces is key to obtaining
strong security properties with compartmentalization fastcgi_do(arguments)

Example: assume the developer implemented our \

boundaries. Compartments still need to HTTP | FastCGI-i
. P i

communicate =Sl — el CEC
o
| L I I |
- | |
el NN !

Open Problem in Compartmentalization
Abstractions

Hardening compartment interfaces is key to obtaining fastegi P
strong security properties with compartmentalization)

)
fastcgi do(@xdeadbeef)

Example: assume the developer implemented our
boundaries. Compartments still need to % \ FaskCGI |
communicate, which opens an attack surface. i

) SSL

(1) Lefeuvre et al., Assessing the Impact of Interface Vulnerabilities in Compartmentalized Software, NDSS'23

Open Problem in Compartmentalization
Abstractions

Hardening compartment interfaces is key to obtaining fastegi P)
strong security properties with compartmentalization fastcgi do(@xdeadbeet)
Example: assume the developer implemented our '
boundaries. Compartments still need to R flw' FashCGI |
communicate, which opens an attack surface.] e o e s

(1) Lefeuvre et al., Assessing the Impact of Interface Vulnerabilities in Compartmentalized Software, NDSS'23

O | b | . C t t | . t .
Targer - - Abstraction Properiies | Tnterface | Design Bound
‘ lass | wirny Abstraction }““”J”““”’“"L""} } Granularity } CIT[A[R } Safery 1o Mechaniom
5 Code-centri ci Clo @) ual Machine (EPT)
g Code-c: clo) El
SeCage (171] o clo El
HODOR [124) y C 2
CAPACITY [105] Ce ARM PAC + MTE
U Tif " z
Arbiter 2211 Data-centric Ei
. Secure Memory Views (SMVs) (125] Data-centric z°
H Salus (2201 Data-centric C &
) 2 Light-Weight Contexts (LwCs) [167] Hybrid clo] Page Table” ° e °
3 POSIX Processes (and carlier Instances) Hybrid Clo| < Page Table
Hardening: - 1?S IS key to obtainin
N THMPK (150] Fiybrid ny clo] Protection Keys
TheriOS (18] Code-centric U/K-component Clol_© CHERT -)
Microkernel Servers 1061, 1.1 Code-centric U/K-component ool o 2z 'F a S 't C 1
Mutable Protection Domains (MPDs) (191, 192 Code-centric S U/K-component Cl|e) 27
U+K [RedLeal (1841 Code-centric S U/K-component T] Safc Languages -
CubiclcOS (211] Code-centric 5 Library clol o Protection Keys L L4
FlexOS (161] Codecentiic |3 Library 2]
XMP {1961 Codecentiic |3 Any 2] I Z I
Monza (33] A Function” El .
VirtuOS q1561 ic | S+A| SHM | Kcomponenl | @ Virtual Machine (EPT) -F b -F
« [EaRe o5 TS| Foncion” | RN PAC £ BT asStcCgl o(vxaea ee
TibretiOS r157] Codecentric | 5| SHM | K-componenl | @ & —_
Cali 63) Codeceniic |5 | _saM Library i
CompARTHL (172 Codecentric | 5| MEs Library 7
o [Enclosure i Codecenwiic | 5 | SAM Package z '
o - Google Sandboxed APL (SAPD) 22 Code-cenuiic | 5| MES Function &
c < RLBox / SWITCH (151, 1551 Hybrid 5 [sam Function z
[] S Wedge [70] Hybrid S SHM Function’ 2
U+K_| CompartOS 51 Code-centric |5 | sav | Linkage Unit CHERT
| LVDs /KSplit 13157 Code-centric | 5| MES | K-component G
XFVLXFT 107, 172] Hybrid S | sAM_| K-component] SH ' et |
] HY__| Nexen (21) Data-centic | S| sHM__| Per-VM domain C Page Table
U [Shreds 31 Codeceniic | S | sam Any E
Privman (147] Code-centiic | S| MBS Function clol o Page Table” I
s Privirans 75 Code-centric | S | mEs Function Clo Page Table” £
23 Swilt 591 Code-centric | S+A | MES Any sis) =
L8 u Glamdring p16s] Code-centric S MES Function clo 2
“1E PurSplit / Program Mandering (169, 170] Code-centric S M Function clo C i
L < DataShield (77] Hybrid S SHM Any ClO Bounds Checking
ERIM 2321 Hybrid S SIM An [S1e]] Protection Keys T3] o ~ F srface o lities i
‘ Om m un I‘ K| Nested Kernel oi Code-centric S SHV I-um:r)mn GO 0 Page Table l ‘ S l I r a ‘ e ASSCSang the]mpa(*l of Interface Vulnerabilities in
T Inherited from thread-like semantics, * from process-like semantics, * from the Nested Kernel, T The PDM does (1o a certain extent).) - ali c——
3 The abstraction could plug onto any intra-AS mechanism, though the paper or documentation claims reliance on a particular one, Comp‘l”memthEd Software
— ipe Huici~, Na P
o [} [
Abuiract—cust-privlege separat p—— s o compiler-hased comps
ke compartments Timied 0. ace what they Sl framens ta apply isolation at arbitary in
Most abstractions consider the ha rdenmg of | SESTTNTIEE SEEmSIITEE
ed

o potentially a targeted ttack (rom a malicious compartmeat

This results in an entire cluss af sccurity bugs: Conspartment
I L Intertace Valnerabilities (CTVsk

depth study of CIVs. We tax-

compartment interfaces an orthogonal problem. B =

be comupled

sed depy

ructares can be manipulated to control
3 o 1], call

w629
+ numerous insights om the prevalence af CTVs,
immpact, aoel the comphexily 1o addre
stress the critical importance of CIVs in compa

ratiog an attack fo ext

ulnecabilites, We systeniatically

modify retum

st 3l mode en:
[601. 119, [53], [35]. 125], [45]. |5]
e problem of securing

hat AP sis
addressing interface vulnerabilities
checke tude the paper with guidelines for CIV-aware

compartment interfuce design, and appesl for more research
tomards systematic CIV detection snd mitigation,

I INTRODUCTION

ula . (19], [42]. [$3],
1. [51]. 2], [52], files [2)
functions/blocks of code [16]. [64], [57]. [1]. 1

i cn ata

s library).

(1) Lefeuvre et al., Assessing the Impact of Interface Vulnerabilities in Compartmentalized Software, NDSS'23

Open Problem in Compartmentalization

Target - - Semantics Abstraction Properiies | Interface esign Boi
5 Code-centric S Function Clo C Virtual Machine (EPT)

AC Code-centric S Function clo o) 27
SeCage 1171] Codecentric | & Function El
HODOR [124) S Library 2
CAPACITY (105] (7 S Any ARM PAC + MTE

¢ [T " i [S+A Any El
Arbiter 2211 Data-centic | 5| _sHM Function” Ei
Secure Memory Views (SMVs) (125] Datacentic | & | _saw Function’ z°
Salus (2261 Data-centric S SHV Tunction” 2’
Light-Weight Contexts (LwCs) [167] Hybrid S SHM TFunction” Page Table”

°o o[€ o . o
POSIX Processes (and earlier InStances) (93 Hybrid Any | Any Any [s1is] Page Table
SOAAP (1171 Hybrid S SHM Any clo Gl b
] TIBMPK (1501 H; S SHM Any [slis] Protection Keys
CheriOS 11081 e-C Any | _Any | U/K-component [s1is] 0 CHERL - °
IS = fastcgi
2 —

Microkernel Servers 1001 1.1 Code-centric | Any | MES | U/K-component

SHM Any

.
ERIM 232 Tiybrid 5 A Clo P ey comcol N . - e T e
K Nested Kernel o eSS Fincion ot “Pige Tible Assessing the Impact of Interface Vulnerabilities in
T Inherited from thread-like semantics, * from process-like semantics, * from the Nested Kernel, T The PDM does (1o a certain extent). ° C o mp artm emalize d SO ftware

3 The abstraction could plug onto any intra-AS mechanism, though the paper or documentation claims reliance on a particular one,

o
&

Mutable Protection Domains (MPDs) (191, 192 Code-centric S SHM U/K-component
U+K [RedLeaf (11 ode-centric | 8 | SHM | U/R-component Safe Languages
CubiclcOS (211] e-centric 5 SV Library Protcection Keys | L L
FIexOS (161] ecentric | & | SHM Library 2l
XMP (961 Codecentric |5 | _siv Any i
strong sec| e —npartmentalization .
VIO (156 Codecentric | S+A | siM | K-componeil | @ Al Mackine (EPT) -F a S t C g 1 d O (a Xd e ad b ee -F)
K HAKC (173 Code-centric S SHM Function [ARM PAC + MTE
LibretiOS (157 Codecentric | & | _siv_| K-component_| @ Gl —_—
Cali 165) 5 | sam Library il
CompARTiSL (137 C. 5 | wes &
. [Enclosure (i) Code-centric | & | suM o] z '
E X a m I e [] -1 = Google Sandboxed API (SAPD) (2] Code-centric S MES Function 0 0 z
c N RLBox / ASWITCH (1511551 Hybrid 5[s Function C ° 2]
[] S Wedge [70] y S SHM Function’ clo] 2
UK [CompartOS 551 . [sm | Linkage Unit 0 CHERT
« [LVDs 7 KSplit 153155 Code-ces 5 | MBS | K-component c G
XEVLXFI (107,172 y S [sy | K-component o} SFT ' Ll |
L] AV | Nexen p2u) S | sHM_|Per-VM domain clol o Page Table
U Shreds [s7) c S SHM Any clo ' Gl
Priviman (137] 2 S | wiEs Function clol o Page Table” I
s Privirans 73 Codecentric | & | _wibs Function clo Page Table” £
513 S Codecentric | S+A | WES Any clo 2]
SIE| v Glamdring (165 0 S Function clo Ci
] PuSplit / Program Mandering (160, 1701 Code-centric | S Function clo z P
< DataShield (77] S > [O Bounds Checking
s

Most abstractions consider the hardening of . ST EamamEnee
DLy SEERTTT oo

omomize thess esues and show thal they o

compartment interfaces an orthogonal problem. L] =T

e canses, impac, o s (demoed
stren the critied inpoeraner. of CIVs In comp - . ” . n thix puper -
: e

We stress that abstractions can and should (1)
facilitate the hardening of compartment interfaces.

31, (651,
stien. This

(1) Lefeuvre et al., Assessing the Impact of Interface Vulnerabilities in Compartmentalized Software, NDSS'23

Open Problem in Compartmentalization

Target - - Semantics Abstraction Properiies | Interface esign Boi
5 Code-centric S Function Clo C Virtual Machine (EPT)

AC Code-centric S Function clo o) 27
SeCage 1171] Codecentric | & Function El
HODOR [124) S Library 2
CAPACITY (105] (7 S Any ARM PAC + MTE

¢ [T " i [S+A Any El
Arbiter 2211 Data-centic | 5| _sHM Function” Ei
Secure Memory Views (SMVs) (125] Datacentic | & | _saw Function’ z°
Salus (2261 Data-centric S SHV Tunction” 2’
Light-Weight Contexts (LwCs) [167] Hybrid S SHM TFunction” Page Table”

°o o[€ o . o
POSIX Processes (and earlier InStances) (93 Hybrid Any | Any Any [s1is] Page Table
SOAAP (1171 Hybrid S SHM Any clo Gl b
] TIBMPK (1501 H; S SHM Any [slis] Protection Keys
CheriOS 11081 e-C Any | _Any | U/K-component [s1is] 0 CHERL - °
IS = fastcgi
2 —

Microkernel Servers 1001 1.1 Code-centric | Any | MES | U/K-component

SHM Any

.
ERIM 232 Tiybrid 5 A Clo P ey comcol N . - e T e
K Nested Kernel o eSS Fincion ot “Pige Tible Assessing the Impact of Interface Vulnerabilities in
T Inherited from thread-like semantics, * from process-like semantics, * from the Nested Kernel, T The PDM does (1o a certain extent). ° C o mp artm emalize d SO ftware

3 The abstraction could plug onto any intra-AS mechanism, though the paper or documentation claims reliance on a particular one,

o
&

Mutable Protection Domains (MPDs) (191, 192 Code-centric S SHM U/K-component
U+K [RedLeaf (11 ode-centric | 8 | SHM | U/R-component Safe Languages
CubiclcOS (211] e-centric 5 SV Library Protcection Keys | L L
FIexOS (161] ecentric | & | SHM Library 2l
XMP (961 Codecentric |5 | _siv Any i
strong sec| e —npartmentalization .
VIO (156 Codecentric | S+A | siM | K-componeil | @ Al Mackine (EPT) -F a S t C g 1 d O (a Xd e ad b ee -F)
K HAKC (173 Code-centric S SHM Function [ARM PAC + MTE
LibretiOS (157 Codecentric | & | _siv_| K-component_| @ Gl —_—
Cali 165) 5 | sam Library il
CompARTiSL (137 C. 5 | wes &
. [Enclosure (i) Code-centric | & | suM o] z '
E X a m I e [] -1 = Google Sandboxed API (SAPD) (2] Code-centric S MES Function 0 0 z
c N RLBox / ASWITCH (1511551 Hybrid 5[s Function C ° 2]
[] S Wedge [70] y S SHM Function’ clo] 2
UK [CompartOS 551 . [sm | Linkage Unit 0 CHERT
« [LVDs 7 KSplit 153155 Code-ces 5 | MBS | K-component c G
XEVLXFI (107,172 y S [sy | K-component o} SFT ' Ll |
L] AV | Nexen p2u) S | sHM_|Per-VM domain clol o Page Table
U Shreds [s7) c S SHM Any clo ' Gl
Priviman (137] 2 S | wiEs Function clol o Page Table” I
s Privirans 73 Codecentric | & | _wibs Function clo Page Table” £
513 S Codecentric | S+A | WES Any clo 2]
SIE| v Glamdring (165 0 S Function clo Ci
] PuSplit / Program Mandering (160, 1701 Code-centric | S Function clo z P
< DataShield (77] S > [O Bounds Checking
s

Most abstractions consider the hardening of . ST EamamEnee
DLy SEERTTT oo

omomize thess esues and show thal they o

compartment interfaces an orthogonal problem. L] =T

e canses, impac, o s (demoed
stren the critied inpoeraner. of CIVs In comp - . ” . n thix puper -
: e

We stress that abstractions can and should (1)
facilitate the hardening of compartment interfaces.

31, (651,
stien. This

How can abstractions that facilitate the =
implementation of secure domain interfaces? RS e

Open Problem in Compartmentalization
Abstractions

Most abstractions consider the hardening of
compartment interfaces an orthogonal problem.

Some do!

Open Problem in Compartmentalization
Abstractions

Most abstractions consider the hardening of
compartment interfaces an orthogonal problem.

........

Some do! 1)

Leveraging C++ types to
ensure all interface-
crossing data is checked

Do as many of these checks | -
as possible automatically |

(1) Narayan et al., Retrofitting Fine Grain Isolation in the Firefox Renderer, USENIX Security 2020

Open Problem in Compartmentalization
Abstractions

Most abstractions consider the hardening of
compartment interfaces an orthogonal problem.

........

Some do! (1) @ |

Using capabilities to exchange
data temporarily and with
reduced permissions

Leveraging C++ types to
ensure all interface-
crossing data is checked

Opaque data types eliminate the
need for checks on exported-and-
reimported objects

Do as many of these checks |
as possible automatically |

(2) Amar et al., CHERIoT RTOS: An OS for Fine-Grained Memory-Safe Compartments on Low-Cost Embedded Devices, SOSP 2025
(1) Narayan et al., Retrofitting Fine Grain Isolation in the Firefox Renderer, USENIX Security 2020

Open Problem in Compartmentalization

Abstractions

Most abstractions consider the hardening of
compartment interfaces an orthogonal problem.

Some do! 1)

........

[Do as many of these checks |

as possible automatically

Leveraging C++ types to

ensure all interface-

crossing data is checked

More work needed in that direction.

2) [

Using capabilities to exchange
data temporarily and with
reduced permissions

Opaque data types eliminate the

need for checks on exported-and-
reimported objects

(2) Amar et al., CHERIoT RTOS: An OS for Fine-Grained Memory-Safe Compartments on Low-Cost Embedded Devices, SOSP 2025

(1) Narayan et al., Retrofitting Fine Grain Isolation in the Firefox Renderer, USENIX Security 2020

Bigger Picture of Compartmentalization

Propose to view compartmentalization as 3 problems: ?

~ B

1. How to determine the right policy to enforce?
o Done with a policy definition method |

2. How to integrate the notion of compartmentalization

policies in software / programming models / idioms? /}\
o Done with a compartmentalization abstraction a

v

O

3. How to enforce policies at runtime?
@ o Done with a compartmentalization mechanism ‘

Problem #3
How to enforce policies?

Finally, we must enforce the policy at runtime.
This is achieved with an enforcement mechanism.

Problem #3
How to enforce policies?

Finally, we must enforce the policy at runtime.
This is achieved with an enforcement mechanism.

Page tables (via the MMU) are the historical enforcement mechanism.

Problem #3
How to enforce policies?

Finally, we must enforce the policy at runtime.
This is achieved with an enforcement mechanism.

Page tables (via the MMU) are the historical enforcement mechanism.
Example from earlier: assume we implemented the sandbox with processes.

===
HTTP FastCGI |
Parser :_Module :
[—m—=— == = ===
| SSL | | |
'Library : :_ " :

(Fictive monolithic program)

Problem #3
How to enforce policies?

Finally, we must enforce the policy at runtime.
This is achieved with an enforcement mechanism.

Page tables (via the MMU) are the historical enforcement mechanism.
Example from earlier: assume we implemented the sandbox with processes.

Address space (pagetable)1 =~ [
< > HTTP | | FastCGI |
Parser ' Module :
L
[———=— =" ===
. SSL I '
. | e o o |
¢ Library | [

Address space (page table) 2
(Fictive monolithic program)

Problem #3
How to enforce policies?

Finally, we must enforce the policy at runtime.
This is achieved with an enforcement mechanism.

Page tables (via the MMU) are the historical enforcement mechanism.
Example from earlier: assume we implemented the sandbox with processes.

Address space (page table) 1
P
< > HTTP FastCGI |
LIy Parser ' Module :
EEE The memory management i
- - unit enforces isolation == === " mm——=n
(IRRRL I SSL | [I
: l cee 1
< Library | |ttt]

Address space (page table) 2
(Fictive monolithic program)

Problem #3
How to enforce policies?

Finally, we must enforce the policy at runtime.
This is achieved with an enforcement mechanism.

Page tables (via the MMU) are the historical enforcement mechanism.
Example from earlier: assume we implemented the sandbox with processes.

Address space (page table) 1

< > arte | | Fastcer

- g— - Parser ' Module |

:E: The memory management Lo
- - unit enforces isolation Sl j—— ===
"TIIIL] | SSL :] I
' Library | | D

Address space (page table) 2
(Fictive monolithic program)

This is still the most common way to do it today.

Enforcement Mechanisms

Enforcement mechanisms (for compartmentalization)
are also a hot area:
Maximize performance

Minimize hardware cost and complexity

Enable for stronger security properties

Enforcement Mechanisms

Enforcement mechanisms (for compartmentalization)
are also a hot area:

Maximize performance

Minimize hardware cost and complexity

Enable for stronger security properties

TABLE 3: Taxonomy of Compartmentalization Mechanisms. Page-Table = PT; Permissions: Read, write, Execute, Address

(create pointers to), @ = supported,

= supported by some, O = unsupported; Overhead: free=0 <® < ® < @ < ®@=very costly.

‘ ‘ Mechanism Class ‘ 5,:::22':‘; | E':‘t ::f:.’ TCB RP(Jr\fm":”“A Granularity ‘ Ne of Domains ('.’? :j::::”:;(i:g’;}?ﬂfﬁf;z.:”
Physical Separation [205] Mutual | Full | @ Physical Mem. Ne of machines | ® — @ (link latency)
Access Bits [25], EPT / vmfunc |26 T Mutual | Full | @ Page oo ® (PT switch +)
PT Supervisor Bit (25, 158, 159] Single [Full | @°| @°| @ Page 2 (kernel/user) | @ (interrupt +)
Mondrian Memory Protection (MMP) [249) Mutual | Full | @°| @°| @ Word =] & (MMP hardware +)
o Protection Keys (13, 27, 53, 217, 259] Mutual [Full | @ | @ | © Page 8-1024 (13, 217]" | @ (special register flip + °)
§ Segmentation-like Hardware (109, 178 Single [Full | @ | @ | O | O | Byte - Page 1781 | 2 (safe/unsafe) ™ (’)
E Enclaves [28. 92) Mutual | TEE | @ | @ | @ | O | Page oo @ (enclave call, incl. 7)
< | TEE [Confidential VMs (10, 29, 30] O Mutual [TEE| @ [@ [@ | O [Page) @ (> EPT switch)
World Separation [9, 14] O Single | TEE | @ | @ | @ | O | Page 2 (trusted/rest) | @ (world switch, incl. 7)
Hardware Capabilities [57, 78, 180, 236, 244] @] Mutual [Full | @ | @ | @ | @ | Byte [='s} - (special instr. + 7)
Bounds-Checking Hardware (47, 95, 148, 155, 212] [Mutual | Full | @°| @ O[O | Byte) @& (bounds hardware + °)
(Other) Tagged Architectures [12. 21. 99, 131, 138, 204, 224, 246] ® Mutual | Full | @°| @°| O | O | Byte - Words 16" - 0o n3s] | ® (tagging hardware + ™)
R Software Capabilities (83, 125) O Mutual [Full (@ | @ | @ | @ | Byte oo & _ @ (impl. dep., incl.)
= | Bounds-Checking Software 225 ® Mutual [Full | @ | @ | © | O | Byte =] & _ @ (impl. dep.. incl. V)
.,2; Safe Languages (50 / Software Verification [154, 163] (@) Single [Full [@ | @@ | @] Byte 2 (safe/unsafe) | O (function call)
:2 Software Fault Isolation (79, 119, 141, 142, 179, 238, 257, 262] O Single [Full | @ | @ | @® | @ | Byte oo [¢] (‘)
Memory Encryption / AES-NI 155 O Mutual | Full | @ | @ | O 128 bits oo ® (copy key + encrypt + 7)

"In Ring 0. * Not all combinations of R/W/X supported. © Covers many granularities (13). °

Some works (113, 173, 190] increase it. * Register

r saving/scrubbing, stack switch.

SoK: &
0K: Software C(ympurlml-nln]izulhm

Hugo Lefeuret

- Nt
The Universiry of Bririgh o

Colmbia, e

uicohahal), payig oy
WA SEL Senicon

isBall™, Pierre Offyjer

% “The Ui,
e VUiVersity of Mancesser

e
i o e

o e
i acadenin ang st -

Pt of Exploies, Ty,

s, ane ety

ware i sl e c

W, aud .

existing o @ can be

Balogy S U1 SEBUEHE Wi ncumgpen
a0 Aty eat mthos, we propra

0 the sysematic sy
PArmentalization approsch

TSI projecy
Migoes in oy

-
researeh efforts wnd angy ity -
ettt o

g thetn (0 wndersizng —rrery

3. i

o 1
© periormance o
cuity g

his paper not andy g
s

ey
d adoption, "

00 mechaniomg
A and !

s artmentaliz
des amique insighy e

. or Oper
) OPenSSH 1195)

(1)

(1) Lefeuvre et al., SoK: Software
Compartmentalization, S&P 2025

154

Mechanism Class EZZZ’; ﬂz;zgerl TCB Rpri:fnlrS;(OTsA Granularity Ne of Domains (‘2 fﬁ?%&?ﬁggﬂg‘;ﬁ;)
Physical Separation [205] O Mutual | Full | @ | @ | @ | O | Physical Mem. Ne of machines | @ — @ (link latency)
Access Bits (251, EPT / vmfunc [26] ©' |Mutal | Full | @° @°| @] O | Page 00 @ (PT switch + °)
pr | Supervisor Bit 25, 158, 159] O Single |Full | @°| @°| @°| O | Page 2 (kernel/user) | @ (interrupt + °)
Mondrian Memory Protection (MMP) [249] O Mutual | Full | @°| @° @°] O | Word %) @ (MMP hardware + 3)
) Protection Keys [13, 27, 53, 217, 259] (] Mutual |Full | @ | @ | © | O | Page 8-1024 (13,217 | ™ (special register flip + >)
§ Segmentation-like Hardware (109, 178) O Single |Full | @ | @ | O | O | Byte - Page 178] | 2 (safe/unsafe) | @ (b)
% Enclaves [28, 92 O Mutual | TEE | @ | @ | @ | O | Page oo @ (enclave call, incl. >)
T | TEE [Confidential VMs [10, 29, 30] O Mutual | TEE | @ | @ | @ | O | Page oo ® (> EPT switch)
World Separation [9, 14] O Single | TEE | @ | @ | @ | O | Page 2 (trusted/rest) | @ (world switch, incl. D)
Hardware Capabilities (57, 78, 180, 236, 244] O Mutval |Full | @ (@ | @ | @ | Byte 00 ® (special instr. +°)
Bounds-Checking Hardware [47, 98, 148, 155, 212] Y Mutual | Full | @°| @°| O | O | Byte o0 @® (bounds hardware + °)
(Other) Tagged Architectures [12, 21, 99, 131, 138, 204, 224, 246] ® Mutual | Full | @°| @°| O | O | Byte - Words® 16" - oo [138] | ® (tagging hardware +)
o Software Capabilities [83, 125) @) Mutual |Full | @ | @ | @ | @ | Byte 00 ® — @ (impl. dep., incl. °)
& | Bounds-Checking Software [225] ® Mutual |Full | @ | @ | © | O | Byte %) @ — @ (impl. dep., incl. D)
2 Safe Languages [50] / Software Verification [154, 163] O Single [Full | @ | @ | ® | @ | Byte 2 (safe/unsafe) | O (function call)
& | Software Fault Isolation (79, 119, 141, 142, 179, 238. 257, 262] @) Single |Full | @ | @ | ® | @ | Byte 'e) & 0C)
Memory Encryption / AES-NI [155] O Mutual |Full | @ (@ | O | O | 128 bits 00 @ (copy key + encrypt + °)

"'In Ring 0. % Not all combinations of R/W/X supported. > Covers many granularities [138].

Some works [113, 173, 190] increase it. ° Register saving/scrubbing, stack switch.

155

Names of the mechanisms we consider

Characteristics we included in the taxonomy

N
. - Trust Permissions . Domain Switch Cost
Mechanism Clasﬂ EZZZ,; Model TCB RIW[X]A Granularity Ne of D‘/ (Versus Non-Separated)
Physical Separation [205] ‘\/’ O Mutual | Full | @ | @ | @ | © | Physical Mem. | Ne of madines | ®— @ (link latency)
Access Bits 251, EPT / vmfunc [26] ©' |Mutal | Full | @° @°| @] O | Page 00 @ (PT switch + °)
pr | Supervisor Bit 25, 158, 159] O Single |Full | @°| @°| @°| O | Page 2 (kernel/user) | @ (interrupt + °)
Mondrian Memory Protection (MMP) (249 O Mutual | Full | @°| @°| @°] © | Word 0o ® (MMP hardware + °)
) Protection Keys [13, 27, 53, 217, 259] (] Mutual |Full | @ | @ | © | O | Page 8-1024 (13,217 | ® (special register flip + >)
§ Segmentation-like Hardware [109, 178 O Single |Full | @ | @ [O | O | Byte - Page [178] | 2 (safe/unsafe) | @ (b)
E Enclaves [28, 92 O Mutual | TEE | @ | @ | @ | O | Page oo @ (enclave call, incl. D)
T | TEE | Confidential VMSs (10, 29, 30] O Mutual | TEE | @ (@ | @ | O | Page oo ® (> EPT switch)
World Separation [9, 14] O Single | TEE | @ | @ | @ | O | Page 2 (trusted/rest) | @ (world switch, incl. D)
Hardware Capabilities (57, 78, 180, 236, 244] O Mutval |Full | @ (@ | @ | @ | Byte 00 ® (special instr. +)
Bounds-Checking Hardware [47, 98, 148, 155, 212] Y Mutual | Full | @°| @°| O | O | Byte 00 ® (bounds hardware +)
(Other) Tagged Architectures [12, 21, 99, 131, 138, 204, 224, 246] o Mutual | Full | @°| @°| O | O | Byte - Words® 16" - oo [138] | ® (tagging hardware +)
_, | Software Capabilities [s3, 125] O |Mutual |Full |@ |@®|@® | @ |Byte oo ® — @ (impl. dep., incl. °)
& | Bounds-Checking Software [225] o Mutual | Full | @ | @ | © | O | Byte [e'e) @ — @ (impl. dep., incl. D)
2 Safe Languages [50] / Software Verification [154, 163] O Single [Full | @ | @ | ® | @ | Byte 2 (safe/unsafe) | O (function call)
& | Software Fault Isolation (79, 119, 141, 142, 179, 238, 257, 262] O Single |Full | @ | @ | @ | ® | Byte 'e) 30
Memory Encryption / AES-NI [155] O Mutual |Full | @ (@ | O | O | 128 bits 00 @ (copy key + encrypt + °)

"'In Ring 0. % Not all combinations of R/W/X supported. > Covers many granularities [138].

Some works [113, 173, 190] increase it. ° Register saving/scrubbing, stack switch.

156

Names of the mechanisms we consider

Characteristics we included in the taxonomy

N
. - Trust Permissions . Domain Switch Cost
Mechanism Clasﬂ gzzg; Model TCB RIW[X]A Granularity Ne of D‘l (Versus Non-Separated)
S 4 O Mutual | Full | @ | @ | @ | © | Physical Mem. | Ne of madines | ®— @ (link latency)
©' |Mutal | Full | @° @°| @] O | Page 00 @ (PT switch + °)
pT | Supervisor BIt 2, O Single | Full | @°| @°| @°| O | Page 2 (kernel/user) | @ (interrupt + °)
Mondrian Memory Protectlon (MMP) [249] O Mutual | Full | @°| @°| @°] © | Word 0o ® (MMP hardware + °)
) Protection Keys [13, 27, 53, 217, 259] (] Mutual |Full | @ | @ | © | O | Page 8-1024 (13,217 | ® (special register flip + >)
§ Segmentation-like Hardware [109, 178 O Single |Full | @ | @ [O | O | Byte - Page [178] | 2 (safe/unsafe) | @)
E Enclaves [28, 92 O Mutual | TEE | @ | @ | @ | O | Page oo @ (enclave call, incl. D)
T | TEE | Confidential VMSs (10, 29, 30] O Mutual | TEE | @ (@ | @ | O | Page oo ® (> EPT switch)
World Separation [9, 14] O Single | TEE | @ | @ | @ | O | Page 2 (trusted/rest) | @ (world switch, incl. D)
Hardware Capabilities (57, 78, 180, 236, 244] O Mutval |Full | @ (@ | @ | @ | Byte 00 ® (special instr. +)
Bounds-Checking Hardware [47, 98, 148, 155, 212] Y Mutual | Full | @°| @°| O | O | Byte 00 ® (bounds hardware +)
(Other) Tagged Architectures [12, 21, 99, 131, 138, 204, 224, 246] o Mutual | Full | @°| @°| O | O | Byte - Words® 16" - oo [138] | ® (tagging hardware +)
. Software Capabilities [83, 125] @) Mutual |Full | @ | @ | @ | @ | Byte o) ® — @ (impl. dep., incl. °)
& | Bounds-Checking Software [225] o Mutual | Full | @ | @ | © | O | Byte [e'e) @ — @ (impl. dep., incl. D)
2 Safe Languages [50] / Software Verification [154, 163] O Single [Full | @ | @ | ® | @ | Byte 2 (safe/unsafe) | O (function call)
& | Software Fault Isolation (79, 119, 141, 142, 179, 238, 257, 262] O Single |Full | @ | @ | @ | ® | Byte 00 30
Memory Encryption / AES-NI [155] O Mutual |Full | @ (@ | O | O | 128 bits 00 @ (copy key + encrypt + °)

"'In Ring 0. % Not all combinations of R/W/X supported. > Covers many granularities [138].

Some works [113, 173, 190] increase it. >

Register saving/scrubbing, stack switch.

157

Again, a few interesting aspects (£
s i ot o |70 FTR] oy [orpoma | e e
Physical Separation [205] O Mutual | Full | @ | @ | @ | O | Physical Mem. Ne of machines | @ — @ (link latency)
Access Bits (251, EPT / vmfunc [26] ©' |Mutal | Full | @° @°| @] O | Page 00 @ (PT switch + °)
pr | Supervisor Bit 25, 158, 159] O Single |Full | @°| @°| @°| O | Page 2 (kernel/user) | @ (interrupt + °)
Mondrian Memory Protection (MMP) [249] O Mutual | Full | @°| @° @°] O | Word %) @ (MMP hardware + 3)
) Protection Keys [13, 27, 53, 217, 259] (] Mutual |Full | @ | @ | © | O | Page 8-1024 (13,217 | ™ (special register flip + >)
§ Segmentation-like Hardware (109, 178) O Single |Full | @ | @ | O | O | Byte - Page 178] | 2 (safe/unsafe) | @ (b)
% Enclaves [28, 92 O Mutual | TEE | @ | @ | @ | O | Page oo @ (enclave call, incl. >)
T | TEE [Confidential VMs [10, 29, 30] O Mutual | TEE | @ | @ | @ | O | Page oo ® (> EPT switch)
World Separation [9, 14] O Single | TEE | @ | @ | @ | O | Page 2 (trusted/rest) | @ (world switch, incl. D)
Hardware Capabilities (57, 78, 180, 236, 244] O Mutval |Full | @ | @ | ® | @ | Byte 00 ® (special instr. +°)
Bounds-Checking Hardware [47, 98, 148, 155, 212] Y Mutual | Full | @°| @°| O | O | Byte o0 @® (bounds hardware + °)
(Other) Tagged Architectures [12, 21, 99, 131, 138, 204, 224, 246] ® Mutual | Full | @°| @°| O | O | Byte - Words® 16" - oo [138] | ® (tagging hardware +)
o Software Capabilities [83, 125) @) Mutual |Full | @ | @ | @ | @ | Byte 00 ® — @ (impl. dep., incl. °)
& | Bounds-Checking Software [225] ® Mutual |Full | @ | @ | © | O | Byte %) @ — @ (impl. dep., incl. D)
2 Safe Languages [50] / Software Verification [154, 163] O Single [Full | @ | @ | ® | @ | Byte 2 (safe/unsafe) | O (function call)
& | Software Fault Isolation (79, 119, 141, 142, 179, 238. 257, 262] @) Single |Full | @ | @ | ® | @ | Byte 'e) & 0C)
Memory Encryption / AES-NI [155] O Mutual |Full | @ (@ | O | O | 128 bits 00 @ (copy key + encrypt + °)

"'In Ring 0. % Not all combinations of R/W/X supported. > Covers many granularities [138].

Some works [113, 173, 190] increase it. ° Register saving/scrubbing, stack switch.

158

Hardware and software are both popular research areas

s i ot L [100 EREEE] i [| e e o
Physical Separation [205] O Mutual | Full | @ | @ | @ | O | Physical Mem. Ne of machines | @ — @ (link latency)
Access Bits (251, EPT / vmfunc [26] ©' |Mutal | Full | @° @°| @] O | Page 00 @ (PT switch + °)
I ntel pr | Supervisor Bit 25, 158, 159] O Single |Full | @°| @°| @°| O | Page 2 (kernel/user) | @ (interrupt + °)
\& Mondrian Memory Protection (MMP) [249] O Mutual | Full | @°| @° @°] O | Word %) @ (MMP hardware + 3)
M P K Protection Keys [13, 27, 53, 217, 259] (] Mutual |Full | @ | @ | © | O | Page 8-1024 (13,217 | ™ (special register flip + >)
2 | Segmentation-like Hardware [109, 178] O Single |Full | @ | @ | O | O | Byte - Page 178] | 2 (safe/unsafe) | @ (b)
E Enclaves [28, 92 O Mutual | TEE | @ | @ | @ | O | Page oo @ (enclave call, incl. >)
TEE | Confidential VMs [10, 29, 30] O Mutual | TEE | @ | @ | @ | O | Page 00 ® (> EPT switch)
C H E RI g World Separation [9, 14] O Single |TEE | @ | @ | @ | O | Page 2 (trusted/rest) | @ (world switch, incl. °)
Hardware Capabilities (57, 78, 180, 236, 244] O Mutval |Full | @ | @ | ® | @ | Byte 00 ® (special instr. +°)
Bounds-Checking Hardware [47, 98, 148, 155, 212] Y Mutual | Full | @°| @°| O | O | Byte o0 @® (bounds hardware + °)
(Other) Tagged Architectures [12, 21, 99, 131, 138, 204, 224, 246] ® Mutual | Full | @°| @°| O | O | Byte - Words® 16" - oo [138] | ® (tagging hardware +)
. Software Capabilities [83, 125) @) Mutual |Full | @ | @ | @ | @ | Byte 00 ® — @ (impl. dep., incl. °)
& | Bounds-Checking Software [225] ® Mutual |Full | @ | @ | © | O | Byte %) @ — @ (impl. dep., incl. D)
2 Safe Languages [50] / Software Verification [154, 163] O Single [Full | @ | @ | ® | @ | Byte 2 (safe/unsafe) | O (function call)
& | Software Fault Isolation (79, 119, 141, 142, 179, 238. 257, 262] @) Single |Full | @ | @ | ® | @ | Byte 'e) & 0C)
Memoryy ption / AES-NI [155] O Mutual |Full | @ | @ | O | O | 128 bits 00 @ (copy key + encrypt + °)

T'In Ring O</\ 1l combinations of R/W/X supported. > Covers many granularities [138]. © Some works [113, 173, 190] increase it. 5 Register saving/scrubbing, stack switch.

WebAssembly

159

A lot of interest in enforcing memory isolation at a byte granularity (vs. a page)

s i ot Lo |10 FTR] oy [orpoma | e
Physical Separation [205] O Mutual | Full | @ | @ | @ | O | Physical Mem. Ne of machines | @ — @ (link latency)
Access Bits (251, EPT / vmfunc [26] ©' |Mutal | Full | @° @°| @] O | Page 00 @ (PT switch + °)
pr | Supervisor Bit 25, 158, 159] O Single |Full | @°| @°| @°| O | Page 2 (kernel/user) | @ (interrupt + °)
Mondrian Memory Protection (MMP) [249] O Mutual | Full | @°| @° @°] O | Word %) @ (MMP hardware + 3)
) Protection Keys [13, 27, 53, 217, 259] (] Mutual |Full | @ | @ | © | O | Page 8-1024 (13,217 | ™ (special register flip + >)
§ Segmentation-like Hardware (109, 178) O Single |Full | @ | @ | O | O | Byte - Page [178] | 2 (safe/unsafe) | @ (b)
E Enclaves [28, 92 O Mutual | TEE | @ | @ | @ | O | Page oo @ (enclave call, incl. >)
T | TEE [Confidential VMs [10, 29, 30] O Mutual | TEE | @ | @ | @ | O | Page oo ® (> EPT switch)
World Separation [9, 14] O Single | TEE | @ | @ | @ | O | Page 2 (trusted/rest) | @ (world switch, incl. D)
Hardware Capabilities (57, 78, 180, 236, 244] O Mutval |Full | @ (@ | @ | @ | Byte 00 ® (special instr. +°)
Bounds-Checking Hardware [47, 98, 148, 155, 212] Y Mutual | Full | @°| @°| O | O | Byte o0 @® (bounds hardware + °)
(Other) Tagged Architectures [12, 21, 99, 131, 138, 204, 224, 246] ® Mutual | Full | @°| @°| O | O | Byte - Words® 16" - oo [138] | ® (tagging hardware +)
o Software Capabilities [83, 125) @) Mutual |Full | @ | @ | @ | @ | Byte 00 ® — @ (impl. dep., incl. °)
& | Bounds-Checking Software [225] ® Mutual |Full | @ | @ | © | O | Byte %) @ — @ (impl. dep., incl. D)
2 Safe Languages [50] / Software Verification [154, 163] O Single [Full | @ | @ | ® | @ | Byte 2 (safe/unsafe) | O (function call)
& | Software Fault Isolation (79, 119, 141, 142, 179, 238. 257, 262] @) Single |Full | @ | @ | @® | @ | Byte 'e) & 0C)
Memory Encryption / AES-NI [155] O Mutual |Full | @ | @ | O | O | 128 bits o0 @ (copy key + encrypt + °)
z

"'In Ring 0. % Not all combinations of R/W/X supported. > Covers many granularities [138].

V

D

ry widely varying — 128 bits!

rubbing, stack switch.

160

s i ot o |10 F TR] oty [orpoma | e
Physical Separation [205] O Mutual | Full | @ | @ | @ | O | Physical Mem. Ne of machines | @ — @ (link latency)
Access Bits (251, EPT / vmfunc [26] ©' |Mutal | Full | @° @°| @] O | Page 00 @ (PT switch + °)
pr | Supervisor Bit 25, 158, 159] O Single |Full | @°| @°| @°| O | Page 2 (kernel/user) | @ (interrupt + °)
Mondrian Memory Protection (MMP) [249] O Mutual | Full | @°| @° @°] O | Word %) @ (MMP hardware + 3)
) Protection Keys [13, 27, 53, 217, 259] (] Mutual |Full | @ | @ | © | O | Page 8-1024 (13,217 | ® (special register flip + >)
§ Segmentation-like Hardware (109, 178) O Single |Full | @ | @ | O | O | Byte - Page 178] | 2 (safe/unsafe) | @ (b)
% Enclaves [28, 92 O Mutual | TEE | @ | @ | @ | O | Page oo @ (enclave call, incl. >)
T | TEE | Confidential VMSs (10, 29, 30] O Mutual | TEE | @ | @ | @ | O | Page 00 ® (> EPT switch)
World Separation [9, 14] O Single | TEE | @ | @ | @ | O | Page 2 (trusted/rest) | @ (world switch, incl. D)
Hardware Capabilities (57, 78, 180, 236, 244] O Mutval |Full | @ | @ | ® | @ | Byte 00 ® (special instr. +)
Bounds-Checking Hardware [47, 98, 148, 155, 212] Y Mutual | Full | @°| @°| O | O | Byte o0 @® (bounds hardware + °)
(Other) Tagged Architectures [12, 21, 99, 131, 138, 204, 224, 246] ® Mutual | Full | @°| @°| O | O | Byte - Words® 16" - oo [138] | ® (tagging hardware +)
o Software Capabilities [83, 125) @) Mutual |Full | @ | @ | @ | @ | Byte 00 ® — @ (impl. dep., incl. °)
& | Bounds-Checking Software [225] ® Mutual |Full | @ | @ | © | O | Byte %) @ — @ (impl. dep., incl. D)
2 Safe Languages [50] / Software Verification [154, 163] @) Single [Full | @ | @ | ® | @ | Byte 2 (safe/unsafe) | O (function call)
& | Software Fault Isolation (79, 119, 141, 142, 179, 238. 257, 262] @) Single |Full | @ | @ | ® | @ | Byte 'e) 30
Memory Encryption / AES-NI [155] O Mutual |Full | @ (@ | O | O | 128 bits 00 @ (copy key + encrypt + °)

"'In Ring 0. % Not all combinations of R/W/X supported. > Covers many granularities [138].

Some works [113, 173, 190] increase it. ° Register saving/scrubbing, stack switch.

Nearly all works aim at cutting the cost of domain switches

161

(1) Watson et al., CHERI: A Hybrid Capability-System Architecture for Scalable Software Compartmentalization, S&P 2015
(2) Amar et al., CHERIoT RTOS: An OS for Fine-Grained Memory-Safe Compartments on Low-Cost Embedded Devices, SOSP 2025

Pick one influential example from the literature: CHERI'Y®?

) . - Condi- Trust Permissions . , . Domain Switch Cost
Mechanism Class vioned | Model TCB RIW[X]A Granularity Ne of Domains (Versus Non-Separated)
(]
s
2
=
<
an
Hardware Capabilities [57, 78, 180, 236, 244] | O [Mutual |[Ful (@ |@|@®|@®]|Byte 00 | @ (special instr. +°)

162

(1) Watson et al., CHERI: A Hybrid Capability-System Architecture for Scalable Software Compartmentalization, S&P 2015
(2) Amar et al., CHERIoT RTOS: An OS for Fine-Grained Memory-Safe Compartments on Low-Cost Embedded Devices, SOSP 2025

Pick one influential example from the literature: CHERI'Y®?

Condi- Trust Permissions Domain Switch Cost

TCB Granularity Ne of Domains (Versus Non-Separated)

Mechanism Class tioned | Model RIW[X]A

"

Hardware mechanism that J

comes as an ISA extension

Hardware

Hardware Capabilities [57, 78, 180, 236, 244] | O [Mutual |[Ful @ @ |®|@®|Byte 00 | @ (special instr. +°)

(1) Watson et al., CHERI: A Hybrid Capability-System Architecture for Scalable Software Compartmentalization, S&P 2015
(2) Amar et al., CHERIoT RTOS: An OS for Fine-Grained Memory-Safe Compartments on Low-Cost Embedded Devices, SOSP 2025

Pick one influential example from the literature: CHERI'Y®?

Condi- Trust Permissions Domain Switch Cost

TCB Granularity Ne of Domains (Versus Non-Separated)

Mechanism Class tioned | Model RIW[X]A

[Hardware mechanism that]

comes as an ISA extension

CHERI extends pointers with
bounds and permission
information. It is very expressive!

Hardware

Hardware Capabilities [57, 78, 180, 236, 244] | O [Mutual |[Ful @ @ |®|@®|Byte | 00 | @ (special instr. +°)

(1) Watson et al., CHERI: A Hybrid Capability-System Architecture for Scalable Software Compartmentalization, S&P 2015
(2) Amar et al., CHERIoT RTOS: An OS for Fine-Grained Memory-Safe Compartments on Low-Cost Embedded Devices, SOSP 2025

Pick one influential example from the literature: CHERI'Y®?

Condi- Trust Permissions Domain Switch Cost

TCB Granularity Ne of Domains (Versus Non-Separated)

Mechanism Class tioned | Model RIW[X]A

[Hardware mechanism that]

comes as an ISA extension

CHERI extends pointers with
bounds and permission
information. It is very expressive!

Hardware

Hardware Capabilities [57, 78, 180, 236, 244] | O [Mutual |[Ful @ @ |®|@®|Byte | 00 | @ (special instr. +°)

It can be used to enforce
isolation at a byte granularity,
as opposed to entire pages

(1) Watson et al., CHERI: A Hybrid Capability-System Architecture for Scalable Software Compartmentalization, S&P 2015
(2) Amar et al., CHERIoT RTOS: An OS for Fine-Grained Memory-Safe Compartments on Low-Cost Embedded Devices, SOSP 2025

Pick one influential example from the literature: CHERI'Y®?

Condi- Trust Permissions Domain Switch Cost

TCB Granularity Ne of Domains (Versus Non-Separated)

Mechanism Class tioned | Model RIW[X]A

[Hardware mechanism that]

comes as an ISA extension

CHERI extends pointers with

bounds and permission It comes with a very low
information. It is very expressive! domain-switching overhead.

L

Hardware Capabilities [57, 78, 180, 236, 244] | O [Mutual |[Ful @ @ |®|@®|Byte | 00 | @ (special instr. +°) |

Hardware

It can be used to enforce
isolation at a byte granularity,
as opposed to entire pages

Open Problem in Enforcement Mechanisms

Mechanisms must fulfill several properties to be suitable to enforce
compartmentalization (we formalize them in the Sok)

Open Problem in Enforcement Mechanisms

Mechanisms must fulfill several properties to be suitable to enforce
compartmentalization (we formalize them in the Sok)

Some (popular!) mechanisms do not fulfill all these properties

We call them conditic@

‘ ‘ Mechanism Class C,“”di'
tioned
Physical Separation [205] O
Access Bits [251, EPT / vmfunc [26] o'
PT Supervisor Bit [25, 158, 159] O
Mondrian Memory Protection (MMP) (249 O
) Protection Keys [13, 27, 53, 217, 259] [J
§ Segmentation-like Hardware [109, 178] ¢
T.% Enclaves (28, 92] @)
T | TEE [Confidential VMs (10, 29, 30] O
World Separation [9, 14]
Hardware Capabilities [57, 78, 180, 236, 244] O
Bounds-Checking Hardware (47, 98, 148, 155, 212] [J
(Other) Tagged Architectures [12, 21, 99, 131, 138, 204, 224, 246] ()
° Software Capabilities (83, 125] ©)
5 | Bounds-Checking Software [225] o
é Safe Languages [50] / Software Verification [154, 163] O
& | Software Fault Isolation [79, 119, 141, 142, 179, 238, 257, 262] O
Memory Encryption / AES-NI [155])

Open Problem in Enforcement Mechanisms

Mechanisms must fulfill several properties to be suitable to enforce
compartmentalization (we formalize them in the Sok)

Some (popular!) mechanisms do not fulfill all these properties

We call them conditic@

Condi-
tioned

‘ ‘ Mechanism Class

Physical Separation [205]

I n te I Access Bits [25], EPT / vmfunc [26] O

Supervisor Bit [25, 158, 159]

ondrian Memory Protection (MMP) [249] @)
IVI P K)‘Otection Keys [13, 27, 53, 217, 259] [}
Mntation—like Hardware [109, 178] ¢

.

Hardwarl\

Enclaves [28, 92] O
TEE | Confidential VMs [10, 29, 30] O
World Separation [9, 14]
Hardware Capabilities [57, 78, 180, 236, 244] O

Bounds-Checking Hardware (47, 98, 148, 155, 212]
(Other) Tagged Architectures [12, 21, 99, 131, 138, 204, 224, 246]

Software Capabilities (83, 125]
Bounds-Checking Software [225) o
Safe Languages [50] / Software Verification [154, 163]
Software Fault Isolation (79, 119, 141, 142, 179, 238, 257, 262]
Memory Encryption / AES-NI [155]

Software

olo|o
O[O0

Open Problem in Enforcement Mechanisms

Mechanisms must fulfill several properties to be suitable to enforce

compartmentalization (we formalize them in the Sok)

7

Some (popular!) mechanisms do not fulfill all these properties
@:hem conditic@

Physical Separatio

Intel

Supervisor H

Access permissions are stored
pocess Bis in an unprotected register

J

ondrian M¢ e

IVI P K £)‘otection Keys [13, 27, 53, 217, 259]
§ Mntation—like Hardware [109, 178]

[
s .
] Enclaves [28, 92
T | TEE [Confidential VMs (10, 29, 30] [@)
World Separation [9, 14]
Hardware Capabilities [57, 78, 180, 236, 244] O
Bounds-Checking Hardware (47, 98, 148, 155, 212] [J
(Other) Tagged Architectures [12, 21, 99, 131, 138, 204, 224, 246] (]
Software Capabilities (83, 125] (
Bounds-Checking Software [225) o

Software

Safe Languages [50] / Software Verification [154,

163]

0O
O

Software Fault Isolation (79, 119, 141, 142, 179, 238,

257, 262)

Memor y Encryption / AES-NI [155]

Open Problem in Enforcement Mechanisms

Mechanisms must fulfill several properties to be suitable to enforce
compartmentalization (we formalize them in the Sok)

Some (popular!) mechanisms do not fulfill all these properties
@:hem conditic@

-

| ‘Physica] — Access permissions are stored]
Intel xesul in an unprotected regisy”

[ondrian M A Skews performance and
IVI P K > V)‘ot‘ectio‘n Keys [13, 27, 53,217, 259] . . .

2 [RoeMnation ke Hardvare o security comparisons

T | TEE [Confidential

woid Serd | structions that can modify this

Hardware Capabilit
Bounds-Checking H

onen Taezed A F€Gister must be protected, but this

Software Capabilitid .

BoundsChecking 5| COMES at @ cost and is often neglected
Safe Languages [50]

Software Fault Isolation (79, 119, 141, 142, 179, 238, 257, 262] O
Memory Encryption / AES-NI [155]

Software

Open Problem in Enforcement Mechanisms

Mechanisms must fulfill several properties to be suitable to enforce
compartmentalization (we formalize them in the Sok)

Some (popular!) mechanisms do not fulfill all these properties
| (@:hem conditic@

Access permissions are stored]

Physical Separatio

Intel xesul in an unprotected regisy”

MPK [o 2 A Skews performance and
= fotection Keys [13, 27, 53,217, 259] ® N .
é%g;gggiﬁ;i:ﬂwm L. 179 — security comparisons
E TEE ConﬁdentialA 3 . = . X

woid Serd | structions that can modify this

Hardware Capabilit
o e register must be protected, but this

Software Capabilitid

BoundsChecking 5| COMES at @ cost and is often neglected

Safe Languages [50]
Software Fault Isolation (79, 119, 141, 142, 179, 238, 257, 262]
Memory Encryption / AES-NI [155]

Software

How to fairly evaluate the security and performance
characteristics of isolation mechanisms?

My promise for this talk

A journey through twenty years of
compartmentalization

3. The why: compartmentalization everywhere, what will it take? \I/\l

What are the remaining obstacles? Where to go from there?

Potential obstacle #1: Lack of awareness?

Potential obstacle

: als
: rity profession
ademics or secu
authored by ac

) V 4

Hogo Lefeavret, Ny Dmkmmm
The Universiy of British Cotunbi, 15y

o .»..u.m“u.mm. ats

Decomposing lerge sy
A g bt o ey e as
mitimize (e et o xplis. syt gy
aemmSted b, ang gremens research ey
" iy, e M ncration of supy
A DI, Thls . vy
A 0 o (i g, g i b iy P, Noing
\'mnngwunmmxun fraoght it : eomsiteaces n e
JoloRY 414 aaytica g, ropos o it e
O, 80 dirvcting of copy.
rymun\h\\ e i rx\vllvrn—wull
e ot o analae 1 iy gy e artmeatalizeg
e, contronting mery O nersand e g ot
o e o

researcl obers, cur tndigs
TVl thot g ods,
A.,mmmwm Je2aCy mechunism, mk\apnrrlmm
recem e conclui iy recomme, o o

e ,.mmmm \hvnlln 2o Sl g e

ing the det o o o i
vt s b leo e
e of confescd et ana mm\«»rr it s el
ovards Wi the gy, o o Binpoia etwesn rescure, ang

P ot oty e Niturical g
bt ot

thecal modet i

I Introduction

Despise Juud‘v ¢ et vulnecabilies il prggge 4o
Thep e Tng them scin g g ca .m\wm
The pincipie Mh'm mwh',wH’H[f‘!\!ﬂ‘/lv the L in
of defense whuv;mlmlv«m-v.uv«w When flas, e unkiogn,
oty e erisiteges neodeg, e poy s
o O 00 DA Wil po iy i
0 5 & prominen
1 devclopers e
- .pm,v d componcry, g
ng; ‘rw ity breaches

umwHumnmhulmn inberits fom g lagge gy
o Work, starting iy e * (93); ncludy modets
Jueh & mictokernels (106, 135, . 256) Security

2 206. 2431, 61 capa]
i oRpatio J25T 9 ihe way. 15 fine arint sppicaton
Compmentalization in the 2oy (155 on 232, 2

s gy
[
Rt Univerey s

orile Wogo Lot way i it
oo, oo el
RS o Ry Kt

1: Lack of awareness?

SoK: Software (,'umpurmwnmlizalinn

! 25d Chisnall, Piage jyie
! Semcondactor e ey o Manchesrer

following guai fix ' OpenSSH 1oy, g,
Promises e oo ot W,w ety issucs {7
i muv!um parics w 181, o
1. 174,201, 33 | et
SCrets {167, 171, 23] o «Vudm« stacks [74).

\.m,,h D K 111, 2351 1 g channels [}
182}, or Froviding i uu!uw« e 154)

Despite longstaning on within'(he walenic
sphere um,wmwmu eness m\uwumumhmr\ P

the adoption of nm«y\muhmvar«h techniques i
sacam St o ains ! SO

I8 5611 Sar from, i practic. Tak,

long s e slaion of erypropppie k™ apracice
tong ,,mmmr by e wummwr\ (65, 70,73, 7 15
1, 210, 226, 2537 b iy

165,

oo y.ﬂ\m S OBIhy Biraries A i ug

EFONING thrcats, e grg oge e e i ben

Somprtmeniane” (= paper investis e e
e B s i g fords 1o o

Rescarch specaacd thy S bs due o' g o

m(nnmmm 165,353) Jimitgiang of wm]muqm!hm 259,

s etformance.overicads {1y

i 1his pr igni
o rewuiing umnmruvmvmvrmuur often hanmpeneg y
Comonoencis in the unders(onding spplication of ity
CONCEDS. Existing o

e, a0 ofen,comradicloy, e © Confusion anq 3
S70I0E BOdY Of work it e <Ompared, The Jock of
2 Systematic persp, e 205 10 4 St bery gy e
SOMNIE compy

the mainsirean,
Jorts: most do oy g sempAEnalizion’ ke aupesss
58 WOLE and hus o sontions hi canor b ey gy
€, ISk i instncam,

Recoatuting these chaflee ~“mwwM.mmmmr
PrOviding a consisens amenork o denig

e, mentalization.
sify wies bas
defoition 5. and i

s usis o sy vl Comparison,
' S our ol g Lexonomy by systomyig
21t rescarch ang gf e SOMars Spstenn o
W...w ePAAlzation, Doy s ! study pro.
e insighis ingy whe

MABSITEAM ¢orty fipee

1

175

Lack of awareness?

Potential obstacle

1

SoK: Software (,'umpurmwnmlizminn

Hogo Lefeavret, Ny Dmkmn!m ! 25d Chisnall, Piage jyie
The Yriversin of B e Sere 1 Semicondctor, *p,

he Unbsersiy of Maneiiesger

followi

Decomposing lerge sy

1000 staller oy

- Posifix o OpenSSH {195, g,

Promises e picsen iting mccnony s e {7,
s huv!ummmv 54, 1811, o7 uny

e 4,301,

privieg “r.b.u.w.”.m.wm‘.‘
oo e he e of . Bt m\mmal
Fouts, demonstragegt hor

ol

i1
11 22 or shadow sy 073
" DEACHCE, Thks e vy sapply chin s 1111, 23514 uu\\uk dummV\H

ssionals
hored by academics or security profe
autho

e 00 o i ey g v o Ning ook O POV e e)
rmnng«punmhuun Lraaghi with incomsstaaies fn e Despite Tongstanding o vt i 5
2000 300 syl g Progose s unineg e sphere uvdprnuudmln‘n mmwm.mmhmr\ proecs
el OBron v g o o o bt e izaion tetaigue b

el DS, We e 1y Toview 21y sercam ot

! SO
ceting practice, Toge

e s A Compartmeniipeg

Tecarch el

«\mm»mu.hnumg)h(mnuuuhum n; lmm lmm of bath of erypeo \‘WW \\M a v'v»vuk\

e i i s 65, 107 21 m,, it

recem uwluar ith re mmvmnumn ompart. A on i

nnmhhmmn M«um be solved. hnmm:!l\‘ PEOgTess s necqed ‘"m""” ”"l"“” = om " M“ aper iovestigatcs the
ving m. Alinition of ¢op ApArentalization I P

e o e o 5 o i S T

m(nnmmm 165,353) Jimitgiang of Hmhmmmﬂ‘m 259,

Jight nrm.m.m m...um and mmn it s vl
Sive Berformunce oveready (14 of

e 5 3 10 g e ety s 555 1 2L 0 ko
st ,.n.,n,\.....n o aate e

160] 4
Tikely oot he e, 304 000 decan o rep:
pr i

rwv": S o o Ty o e

work to s

ks o o i o g, o0 Designng
) .M.m., st 1 gy ey
1. Introduction 1» ondersande .

Despitc decades of effor, w\mr.hmm\ sl plasuc sop,
48, and s hem scencing s game of g .m\um
he PARCIE of eastprfone o L) 1209) s i st K
o Jefense when protectis o e s are AmAwmu
’ te Pol.p

cotaliza iy
the miinsrcim, and he (oger and fruning of rescarcy
s L ompnise of e gy MH oo mwh o ot ot g o ke compartimentaliggn'y oo aspects

™ as whote g produce mhwmh st Cannor b relgugpy

iy ,w e o el i .3 iy
e g e 0 P e T Resutiang e e e i o
reduce Hh-mvm»! o pte i ey & eiches pr,,\,.uu: o SEASSEI Aok, f gy undersiand
Softva i e s g o i gy S
S o W s) 0 e b i ot o
el s microkemcls [0, 155,) M. 258), sccuriy COmprtmentafiyign SIS based oq ther ey
o ASmels 56, 35 208, 205, 3437 - oty Glion mepege %, 10l et providiag

S o Sytctnitic vy vt Comparison,
Y Yt our mod g e, oy by Systemaiizing

s 183, 125T: ul he oy g o0 T applicaion ki
Compmentalization in the 2oy (155 on 232, 2

e vk s iy e Sch 404 61 maingreany sy Syatems imple
Uity of et g o
Rt Univerey s

o s o wi e 211 rese
o 100 N T 1 nmmw oA lzation, Doy s 1 sty
"

. : N
it at the university, no
rely teach it at | S
Wetbc?f cczlmmon "software design pattern
par

A e vide g SIS o where mainscza sqign:

N 25
lization, S&P 20
. Compartmenta
l., SoK: Software
1) Lefeuvre et al,,

' reness?
Potential obstacle #1: k of awa

1

SoK: Software (,'umpurmwnmlizminn

alized
usively

Hogo Lefeavret, Ny Dmkmn!m ! 25d Chisnall, Piage jyie
The Yriversin of B e Sere 1 Semicondctor, *p,

he Unbsersiy of Maneiiesger

followi

Decomposing lerge sy

1000 staller oy

- Posifix o OpenSSH {195, g,

Promises e picsen iting mccnony s e {7,
s huv!ummmv 54, 1811, o7 uny

e 4,301,

privieg “r.b.u.w.”.m.wm‘.‘
oo e he e of . Bt m\mmal
Fouts, demonstragegt hor

ol

i1
11 22 or shadow sy 073
" DEACHCE, Thks e vy sapply chin s 1111, 23514 uu\\uk dummV\H

e

e 00 o i ey g v o Ning ook O POV e e)
rmnng«punmhuun Lraaghi with incomsstaaies fn e Despite Tongstanding o vt i 5
2000 300 syl g Progose s unineg e sphere uvdprnuudmln‘n mmwm.mmhmr\ proecs
el OBron v g o o o bt e izaion tetaigue b

el DS, We e 1y Toview 21y sercam ot

! SO
ceting practice, Toge

e B S ooty

Tecarch el

‘memm. it o, of rype ",»m S 4 iy
Feveal shat i s e ,M — e 11 65, 167, 217, 224 rmum”mmurm
s s, s sy e Poesapor e s m MMm,,,m.\‘,m s, A s i of
e o s o, 80U Ot e Y i sccuriey b
nx\nmb:n:u.;m Pl o T e e
i e i g o Wm.“y.w..mm\‘m 500w 10 e
o i kg o o et o e i v gt b

Sutomaion 165, 353) it of Hmhmmmﬂ‘m 259,

Jight nrm.m.m m...um and mmn it s vl
Sive Berformunce oveready (14 sck of

e 5 3 10 g e ey s s 25) 22 8 ko
st ,.n.,n,\.....n o aate e

160] 4
Tikely oot he e, 304 000 decan o rep:
pr i

rwv": S o o Ty o e

work to s

ks o o i o g, o0 Designng
.M.m., st 1 gy ey
1. Introduction 1» ondersande .

Despitc decades of effor, w\mr.hmm\ sl plasuc sop,
48, and s hem scencing s game of g .m\um
he PARCIE of eastprfone o L) 1209) s i st K
o Jefense when protectis o e s are AmAwmu
’ te Pol.p

cotaliza iy
the miinsrcim, and he (oger and fruning of rescarcy
s L ompnise of e gy MH oo mwh o ot ot g o ke compartimentaliggn'y oo aspects

™ as whote g produce mhwmh st Cannor b relgugpy

e o e el g 4
e g e 0 P A,W e e it oy
e Hh-mvm»! o pte \m Uity breaches, pr,,\,.uu: 8 COmSICNt famenory or e finiog, undersian
o o el 0 it 1%, i e e 0 o
Sclt as microkemels HM l‘h 1 . ‘R\! Security Compurtmentalizajon m.m»m! sed o i policy

T Sl 150 5305 2o, 317 S Sl g, 0 i Y

S o Sytctnitic vy vt Comparison,
Y Yt our mod g e, oy by Systemaiizing

s 183, 125T: ul he oy g o0 T applicaion ki
Compmentalization in the 2oy (155 on 232, 2

e vk s iy e Sch 404 61 maingreany sy Syatems imple
Uity of et g o
Rt Univerey s

o s o wi e 211 rese
o 100 N T 1 nmmw oA lzation, Doy s 1 sty
"

A e vide g SIS o where mainscza sqign:

bUt.“ ization, S&P 2025
Ye S’ et al., SoK: Software Compartmentalizatio
(1) Lefeuvre .

Potential obstacle #2: Performance?

Potential obstacle #2: Performance? Footcplee0

HTTP -1 PFastCGI
Parser Module

Compartmentalization has an impact on performance

e Crossing protection domains or IPC is not free (among others)
* This cost varies based on where crossings are in the control flow

Potential obstacle #2: Performance? Footcplee0

HTTP -1 PFastCGI
Parser Module

Compartmentalization has an impact on performance
e Crossing protection domains or IPC is not free (among others)

* This cost varies based on where crossings are in the control flow
This makes compartmentalization more complex and limits the
extent to which one can compartmentalize

Open Problem in Policy Definition Methods

Remember our policy
definition challenge...

Potential obstacle #2: Performance? Footcplee0

HTTP -1 PFastCGI
Parser Module

Compartmentalization has an impact on performance
e Crossing protection domains or IPC is not free (among others)

* This cost varies based on where crossings are in the control flow
This makes compartmentalization more complex and limits the
extent to which one can compartmentalize

Open Problem in Policy Definition Methods

Critical stance: in most cases, this is not a problem.

Remember our policy
definition challenge...

Potential obstacle #2: Performance? Footcplee0

HTTP -1 PFastCGI
Parser Module

Compartmentalization has an impact on performance
e Crossing protection domains or IPC is not free (among others)

* This cost varies based on where crossings are in the control flow
This makes compartmentalization more complex and limits the
extent to which one can compartmentalize

Open Problem in Policy Definition Methods

Critical stance: in most cases, this is not a problem.

e The community is overly focused on performance

* The cost is reasonable in most cases if the
compartmentalization is done correctly [

* In fact, many performance-sensitive programs are
compartmentalized!

Remember our policy
definition challenge...

Potential obstacle #2: Performance? Footcplee0

HTTP -1 PFastCGI
Parser Module

Compartmentalization has an impact on performance
e Crossing protection domains or IPC is not free (among others)

* This cost varies based on where crossings are in the control flow
This makes compartmentalization more complex and limits the
extent to which one can compartmentalize

Open Problem in Policy Definition Methods

Critical stance: in most cases, this is not a problem.
e The community is overly focused on performance
* The costis reasonable in most cases if the
compartmentalization is done correctly [
* In fact, many performance-sensitive programs are
compartmentalized! Yes, but...

Remember our policy
definition challenge...

Potential obstacle #3: Complexity!

Potential obstacle #3: Complexity!

The historical approach to compartmentalizing software is too complex.

Potential obstacle #3: Complexity!

The historical approach to compartmentalizing software is too complex.

Going back to our example:

Determining boundaries

————

Policy Definition Methods

Historically, people have done this manually.

Example: we want to split this C program.

A developer looks attentively at the program...

,,,,,,,,,,,,,,

rar

This is still the most common way to do it today.

Potential obstacle #3: Complexity!

The historical approach to compartmentalizing software is too complex.

Going back to our example:

Implementing them with
Determining boundaries L low-level process APIs

————

~——
Problem #2

Policy Definition Methods How to implement policies?

Historically, people have done this manually. Having defined a policy, we need to express it in the program.

Example: we want to split this C program. Developers perform this using programming abstractions.

Historically, people have done this with processes (=the process abstraction).

A developer looks attentively at the program...

i HTTP | | FastCGI | f;ﬁ- ------------ Example: assume we sandbox the HTTP parser.
N I T T —— - HTTP F I
! parser | ! Module | I donot trust this | HTTP | HTTP " parser | | Module |
'l parser | | | | eI=2T0 2o TCo
ST T component” :_ Parser |~ ibox LFarser 1 fork() SetupIPC.. chroot()

e .. | TssL : HTTP HTTP
T . 1
Lo e ' "l particularly value |~ ssL | SSL Cldbrary | LTt] | parser | Parser
Library
safebox

; L e B I e e ettt (e i
(Fictive monalithic program) this component” Library |

{Fictive monalithic program) setuid() seccomp()

This is still the most common way to do it today. This is still the most common way to do it today.

Potential obstacle #3: Complexity!

The historical approach to compartmentalizing software is too complex.

Going back to our examp

Determining boundaries

e.

Implementing them with
low-level process APIs

Securing them with
ad-hoc audits

————

Policy Definition Methods

Historically, people have done this manually.

Example: we want to split this C program.

A developer looks attentively at the program...

{ WrP 0 Fastcsri |
! Parser | ! Module | "I do not trust this | HTTP |
P [component” L Parser | o LParser
i SSLI i]
! Library | ! 1 fmmm s

""""" "I particularly value | ssL i

'] — ..

(Fictive monalithic program) this component” | Ubrary | epox LLibrary

This is still the most common way to do it today.

N
Problem #2

How to implement policies?

Having defined a policy, we need to express it in the program.
Developers perform this using programming abstractions.

Historically, people have done this with processes (=the process abstraction).

!;3. s memer Example: assume we sandbox the HTTP parser.

1 I 1
LEafﬁef,l Ltm,d‘il,e,l fork() SetuplIPC... chroot()

i) i D L
1 SsL L] : ‘r HTTP 1 HTTP

. 1 000 -
L\.}Erfﬁ[yf, 'L 77777 1 ‘_Parser : Parser

{Fictive monalithic program) setuid() seccomp()

This is still the most common way to do it today.

Vﬁa\.. Assessing the Impact of Interface i in Comp: lized Software, NDSS'23
Open Problem in Compartmentalization
Abstral

Hardening rsis key to obtaining ., ¢,)
strong sec npartmentalization fastegi_do(oxdeadbeef)
Example: ¢ plemented our

boundarie led to R FastCGI |
communic 1ck surface. :

Most abstractions consider the hardening of
compartment interfaces an orthogonal problem.

We stress that abstractions can and should w
facilitate the hardening of compartment interfaces.

How can abstractions that facilitate the
implementation of secure domain interfaces?

Potential obstacle

3: Complexity!

The historical approach to compartmentalizing software is too complex.

Going back to our examp

e.

Determining boundaries

Implementing them with
low-level process APIs

————

Policy Definition Methods

Historically, people have done this manually.
Example: we want to split this C program.

A developer looks attentively at the program...

{ WrP 0 Fastcsri |
! Parser | ! Module | "I do not trust this | HTTP |
P [component” L Parser | o LParser
i SSLI i]
! Library | ! 1 fmmm s

""""" "I particularly value | ssL i

'] — ..

(Fictive monalithic program) this component” | Ubrary | epox LLibrary

This is still the most common way to do it today.

Securing them with
ad-hoc audits

N
Problem #2

How to implement policies?
Having defined a policy, we need to express it in the program.
Developers perform this using programming abstractions.

Historically, people have done this with processes (=the process abstraction).

!;ﬁ_ _____ [— Example: assume we sandbox the HTTP parser.
HTTP 1 FastCGI |
|
LEafﬁef, 'L @o,d‘il,e,l fork() SetupIPC... chroot()
| ssL i i BT I T
' Library | 0T 7: | Parser : Parser
(Fictive monolithic program) setuid() seccomp()

This is still the most common way to do it today.

Vﬁa\.. Assessing the Impact of Interface i in Comp: lized Software, NDSS'23
Open Problem in Compartmentalization
Abstral

Hardening 's is key to ot_)tau.nmg factess ,
strong sec npartmentalization fastegs_do(oxdeadbect)
Example: ¢ plemented our

boundarie led to R FastCGI |
communic 1ck surface, :

Most abstractions consider the hardening of
compartment interfaces an orthogonal problem.

We stress that abstractions can and should w
facilitate the hardening of compartment interfaces.

How can abstractions that facilitate the
implementation of secure domain interfaces?

This approach is ad-hoc, costly in developer time,
and requires a lot of expertise.

Potential obstacle #3: Complexity!

The historical approach to compartmentalizing software is too complex.

Worse yet, it considers compartmentalization
as a one-off operation, which it isn't.

Potential obstacle #3: Complexity!

The historical approach to compartmentalizing software is too complex.

Worse yet, it considers compartmentalization
as a one-off operation, which it isn't. %7
. . Hﬁ FastCGI
Consider debugging: ParSer Module
* There will be bugs to fix. - ; I §
Library | [°°°

Potential obstacle #3: Complexity!

The historical approach to compartmentalizing software is too complex.

Worse yet, it considers compartmentalization Prociss Process
as a one-off operation, which it isn't. \ M
. _ Hi FastCGI
Consider debugging: ParSer Module
* There will be bugs to fix. = | :§
* Bugs now occur across security boundaries. Library | [*
|

\
Process Process

Potential obstacle #3: Complexity!

The historical approach to compartmentalizing software is too complex.

Worse yet, it considers compartmentalization Process Process
. . \

as a one-off operation, which it isn't. \ M
Hi FastCGI

Consider debugging: ParSer Module

* There will be bugs to fix. - g |

. . oy,

* Bugs now occur across security boundaries. Library | | *°°

* This impacts the debugging experience but \
Process Process

the debugging ecosystem is not there.

Potential obstacle #3: Complexity!

The historical approach to compartmentalizing software is too complex.

Worse yet, it considers compartmentalization

as a one-off operation, which it isn't.

. . HTTP FastCGI
Consider maintenance! e Module
* Developers will need to maintain the

partitioned program. Liiﬁgry

Potential obstacle #3: Complexity!

The historical approach to compartmentalizing software is too complex.

Worse yet, it considers compartmentalization

as a one-off operation, which it isn't.
Consider maintenance! P';EZP FMaosdtucheI
* Developers will need to maintain the
partitioned program. Liiﬁgry
 Over time, the partitioning strategy may //\;,\6‘?

need to change.
WSession KEEE @
the SSL
Keys Lib

. [J
[] (1) Lefeuvra et al, Assessing the Impact of Intarface Vulnerabilities in Compartmentalized Software, NDSS'23
Potential obstacle #3: Complexity! ..o iommmm

Abstral e
Hardening 3s is key to obtaining fastegs_ D
strong sec npartmentalization fasteqt_do(oxdeadbeet)
. . . . Examplei i i "lp\emented our
The historical approach to compartmentalizing soft\ = [.
ost abstracti e hardening o

We stress that abstractions can and should
facilitate the hardening of compartment interfaces.

Worse yet, it considers compartmentalization "

as a one-off operation, which it isn't.
Consider maintenance! P';EZP FMaosdtucheI
 Developers will need to maintain the
partitioned program. Lizﬁgry
* QOver time, the partitioning strategy may A -
need to change. / \
e Again, there is historically no tooling to SeKSeSyi:” iﬁgigf

handle that safely and avoid regressions.

Potential obstacle #4: The lack of a
systematic approach?

Potential obstacle #4: The lack of a v 3@(
systematic approach?

The historical approach to compartmentalization does not scale:

e Historically, compartmentalization is deeply custom to each program
Compartmentalize program A, then start all over again with B

Potential obstacle #4: The lackofa v 3@(
systematic approach?

The historical approach to compartmentalization does not scale:

e Historically, compartmentalization is deeply custom to each program
Compartmentalize program A, then start all over again with B

Can we make compartmentalization efforts reusable?

Potential obstacle #4: The lackofa Vo B
systematic approach?

The historical approach to compartmentalization does not scale:

e Historically, compartmentalization is deeply custom to each program
Compartmentalize program A, then start all over again with B

Can we make compartmentalization efforts reusable?

 Can we compartmentalize component C, and reuse that
component compartmentalized everywhere?

 Analogy to the "software crisis" from the 1960s:

o The answer to "we are not producing enough software" is to
build software from reusable componentsw

(1) nttps://www.cs.dartmouth.edu/~doug/components.txt

ogolden age

't is the right time to push
compartmentalization everywhere of#=

* More than ever we need more secure software

CYBER THREAT
OVERVIEW
2023

The level of cyber threat keeps on increasing (...).
Today, ANSSI assesses that attackers linked to
China, Russia and cybercrime pose the greatest
threat to the most critical networks and to the
French ecosystem in a systemic way.

*emphasis mine

(1) https://www.cert.ssi.gouv.fr/uploads/CERTFR-2024-CTI-002.pdf 202

't is the right time to push
compartmentalization everywhere o[z

e More than ever we need more secure software
« Compartmentalization absolutely fits the needs

CYBER THREAT
OVERVIEW
2023

= (2) The level of cyber threat keeps on increasing (...).
Tedlan—AbCClasqnsses that attackers linked to
:,, Secure Hardware Foundation: Incorporate cybercrime pose the greatest
G' architectural features that enable fine- st critical networks and to the
59 grained memory protection, such as those in a systemic way.

described by Capability Hardware Enhanced
RISC Instructions (CHERI)

*emphasis mine

Co-signed by, among
others, UK, NL, DE, NO

(2) https://www.cisa.gov/sites/default/files/2023-10/SecureByDesign_1025 508c.pdf
(1) https://www.cert.ssi.gouv.fr/uploads/CERTFR-2024-CTI-002.pdf 203

't is the right time to push
compartmentalization everywhere

* The challenges to push compartmentalization at
scale are not new:

(1) Lefeuvre et al., SoK: Software Compartmentalization, S&P 2025

't is the right time to push
compartmentalization everywhere

. (1)
* The challenges to push compartmentalization at

scale are not new:
o Research has explored them in many ways
and come up with solutions that work

(second part of this talk!)

My promise for this talk

A journey through twenty years of
compartmentalization

4. . zation? (sl
2. A systematic perspective on compartmentalization fs

3. The why: compartmentalization everywhere, what will it take?

Take a step back: How do practitioners compartmentalize?
What does research say? What are open challenges?

(1) Lefeuvre et al., SoK: Software Compartmentalization, S&P 2025

't is the right time to push
compartmentalization everywhere

. (1)
* The challenges to push compartmentalization at

scale are not new:
o Research has explored them in many ways
and come up with solutions that work

(second part of this talk!)
o These advances are just asking to be My promise for this talk

A journey through twenty years of

developed and mainstreamed

3. The why: compartmentalization everywhere, what will it take?

Take a step back: How do practitioners compartmentalize?
What does research say? What are open challenges?

(1) Lefeuvre et al., SoK: Software Compartmentalization, S&P 2025

The missing frameworks are emerging

Take RLBox, discussed earlier in the talk me—
* Productized in Firefox for library isolation
e You can use it: https://github.com/PLSysSec/rlbox

(1) Narayan et al., Retrofitting Fine Grain Isolation
in the Firefox Render, USENIX Security 2020

207

https://github.com/PLSysSec/rlbox
https://github.com/ORCA-LF/governance
https://github.com/ORCA-LF/governance
https://github.com/ORCA-LF/governance

The missing frameworks are emerging |

Take RLBox, discussed earlier in the talk
* Productized in Firefox for library isolation

You can use it: https://github.com/PLSysSec/rlbox

Recently: increasing interest in coming together to
create industry standards for compartmentalization

(1) Narayan et al., Retrofitting Fine Grain Isolation
in the Firefox Render, USENIX Security 2020

208

https://github.com/PLSysSec/rlbox
https://github.com/ORCA-LF/governance
https://github.com/ORCA-LF/governance
https://github.com/ORCA-LF/governance

The missing frameworks are emerging

Take RLBox, discussed earlier in the talk
* Productized in Firefox for library isolation
* YOoU can use it: https://github.com/PLSysSec/rlbox

Recently: increasing interest in coming together to
create industry standards for compartmentalization
* The Open Robust Compartmentalization Alliance
was just accepted as Linux Foundation
project: nttps://github.com/ORCA-LF/governance
 Aiming to foster the adoption and standardization

of compartmentalization practices Join us! Still in early stage, you
can send me a message. 209

(1) Narayan et al., Retrofitting Fine Grain Isolation
in the Firefox Render, USENIX Security 2020

https://github.com/ORCA-LF/governance
https://github.com/ORCA-LF/governance
https://github.com/ORCA-LF/governance
https://github.com/PLSysSec/rlbox

The hardware ecosystem is emerging

Take CHERI, discussed earlier as well.

(1) Watson e
(2) Amar ot al, CHER)

 CHERL: A Hybrid Capability-Syster
RTOS: An OS for Fine-Grained Memory-Safe Compartments on Low-Cost Embedd

Architecture for Scalable Software Compartm

Pick one influential example from the literature: CHERI "™

Hardware mechanism that
comes as an ISA extension

CHERI extends pointers with
bounds and permission

Itis very exp

jon, S&P 2015
SOSP 2025

hing overhead.

It can be used to enforce
isolation at a byte granularity,
as opposed to entire pages

https://cheri-alliance.org/
https://cheri-alliance.org/
https://cheri-alliance.org/

The hardware ecosystem is emerging

Take CHERI, discussed earlier as well.

It is not a research prototype. You can use it

ARM Morello Prototype
Board (2020)

ICENI Family 250

ICENI Family (CHERIoT): CHERI for
the embedded world (2025)

Pick one influential example from the literature: CHERI'

Hardware mechanism that

CHERI extends pointers with
bounds and permission

1t comes with a very low
hing overhead

HUART. Pl

erfg i puc
SmEC “fimer use

CHERIOT 1BEX
RISC-V Coire

ey Mgt aAC
uDMA. e Hac
NVM Memory A -

(128K8 -2M8)

PWM
ADC
DAC

Optional Security Subsystem

[Codasip X730 (2024)]

211

https://cheri-alliance.org/
https://cheri-alliance.org/
https://cheri-alliance.org/

The hardware ecosystem is emerging

(1) Watson et al, CHERI: A Hybeid Capability-System Architecture for Scalable Software Compartmentalization, S&P 2015
(2) Amar et al, CHERIOT RTOS: An OS for Fine-Grained Memary. Safe Compartments on Law-Cost Embedded Devices, SOSP 2025
e . H 5 3 i ve]
I (: I I | R I Pick one influential example from the literature: CHERI'"
Hardware mechanism that

It is not a research prototype. You can use it!

| ICENI Family (CHERIoT): CHERI for
the embedded world (2025)

PWM

soixs

aaaaaa

ARM Morello Prototype
Board (2020)

Recently: creation of the CHERI Alliance to support
industry standards and foster adoption
 Join the CHERI Alliance! https://cheri-alliance.org/

[Codasip X730 (2024)]

212

https://cheri-alliance.org/
https://cheri-alliance.org/
https://cheri-alliance.org/

Software compartmentalization
everywhere: what will it take?

Open Problem in Enforcement Mechanisms
Mechanisms must fulfill several properties to be suitable to enforce

Some (popular!) mechanisms do not fulfill allthese properties

1:';.‘:‘ _ Open Problem in Compartmentalization
i

Yes, there are many interesting research challenges left.

But for the better part, it is about transitioning two decades of
research into the industry and open-source communities

1. An effort on industry-grade compartmentalization frameworks
to lower the bar to compartmentalize software

2. An effort on using these frameworks to compartmentalize
vulnerable components in a re-usable fashion: can we do this
under the umbrella of Linux distributions?

3. Supporting the push towards emerging security-oriented
hardware: integrate CHERI in your hardware products!

214

Open Problem in Enforcement Mechanisms

Mechanisms must fulfill several properties to be suitable to enforce
compartmentalization fwe formaize

themin the S|

some (popular!) mechanisms do not fulfill al these properties

:jf,‘(g E Open Problem in Compartmentalization
Abstral T

Yes, there are many interesting research challenges left.

characteristi boundarie

communic

isiskey to obtaining ., 3
npartmentalization P

fastegi_do(oxceadbeet)

Jplemented our
led to
\ck surface.

Most abstractions consider the hardening of
compartment interfaces an orthogonal problem.
We stress that abstractions can and should
facilitate the hardening of compartment interfaces.

How con abstractions that faciltate the
implementation of secure domain nterfaces?

57 hodule

But for the better part, it is about transitioning two decades of | =i ==

Take our example: our split cuts a hot path. We can | =&
spend more developer time to look attentivelyand | | tiorsgy
refine our cut to avoid the critical code paths. Vo - e—

research into the industry and open-source communities L

Which trade-offs are desirable in practice?

Open Problem in Enforcement Mechanisms

Mechanisms must fulfill several prop

ies to be suitable to enforce
compartmentalization size the -

Some (popular!) mechanisms do not fulfill all these properti

Open Problem in Compartmentalization

Abstral

Yes, there are many interesting research challenges left. e SRR e

Most abstractions consider the hardening of
compartment interfaces an orthogonal problem.
We stress that abstractions can and should
facilitate the hardening of compartment interfaces.

How con abstractions that faciltate the
implementation of secure domain nterfaces?

Open Problem in Policy Definition Methods

But for the better part, it is about transitioning two decades of | =iwini

Take our example: our split cuts @ hat path. We can
spend more developer time to look attentively and
refine our cut to avoid the critical code paths. Vo - e—

research into the industry and open-source communities e

propertes of progroms ore undecidabie”

Which trade-offs are desirable in practice?

1. An effort on industry-grade compartmentalization frameworks
to lower the bar to compartmentalize software

Yes, there are many interesting research challenges left.

But for the better part, it is about transitioning two decades of
research into the industry and open-source communities

1. An effort on industry-grade compartmentalization frameworks
to lower the bar to compartmentalize software

2. An effort on using these frameworks to compartmentalize
vulnerable components in a re-usable fashion: can we do this
under the umbrella of Linux distributions?

Yes, there are many interesting research challenges left.

But for the better part, it is about transitioning two decades of
research into the industry and open-source communities

1. An effort on industry-grade compartmentalization frameworks
to lower the bar to compartmentalize software

2. An effort on using these frameworks to compartmentalize
vulnerable components in a re-usable fashion: can we do this
under the umbrella of Linux distributions?

3. Supporting the push towards emerging security-oriented
hardware: integrate CHERI in your hardware products!

THE UNIVERSITY
OF BRITISH COLUMBIA

Key Takeaways

THE UNIVERSITY
OF BRITISH COLUMBIA

Key Takeaways

1. Compartmentalization is a key practice to improve the
trustworthiness of software

THE UNIVERSITY
OF BRITISH COLUMBIA

Key Takeaways

1. Compartmentalization is a key practice to improve the
trustworthiness of software

2. Compartmentalization, in its historical form, is hindered by its
complexity

THE UNIVERSITY
OF BRITISH COLUMBIA

Key Takeaways

1. Compartmentalization is a key practice to improve the
trustworthiness of software

2. Compartmentalization, in its historical form, is hindered by its
complexity

3. Wellive at a golden age to solve this problem. A call to the
community: we can make software more trustworthy!

Collaborators:
L Unikraft (&) 7 RICE

. Imperial College ¢ LIEGE
Microsoft | o < @ & univeerité

THE UNIVERSITY Sponsors:

\d \/ kol
OF BRITISH COLUMBIA S REDU Co-funded by ﬁ UK Researc)
S the European Union and Innovation

Key Takeaways

1. Compartmentalization is a key practice to improve the
trustworthiness of software

2. Compartmentalization, in its historical form, is hindered by its
complexity

3. Wellive at a golden age to solve this problem. A call to the
community: we can make software more trustworthy!

Questions? Reach out: hugo.lefeuvre@ubc.ca

mailto:hugo.lefeuvre@ubc.ca

	Slide 1: Software Compartmentalization Everywhere - What Will it Take?
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Systematizing Compartmentalization
	Slide 33: Systematizing Compartmentalization
	Slide 34: Systematizing Compartmentalization
	Slide 35: Systematizing Compartmentalization
	Slide 36: My promise for this talk
	Slide 37: My promise for this talk
	Slide 38: What is Software Compartmentalization?
	Slide 39: What is Software Compartmentalization?
	Slide 40: What is Software Compartmentalization?
	Slide 41: What is Software Compartmentalization?
	Slide 42: What is Software Compartmentalization?
	Slide 43: What is Software Compartmentalization?
	Slide 44: What is Software Compartmentalization?
	Slide 45: What is Software Compartmentalization?
	Slide 46: What is Software Compartmentalization?
	Slide 47: What is Software Compartmentalization?
	Slide 48: What is Software Compartmentalization?
	Slide 49: What is Software Compartmentalization?
	Slide 50: What is Software Compartmentalization?
	Slide 51: What is Software Compartmentalization?
	Slide 52: What is Software Compartmentalization?
	Slide 53: What is Software Compartmentalization?
	Slide 54: What is Software Compartmentalization?
	Slide 55: What is Software Compartmentalization?
	Slide 56: What is Software Compartmentalization?
	Slide 57: What is Software Compartmentalization?
	Slide 58: What is Software Compartmentalization?
	Slide 59: What is Software Compartmentalization?
	Slide 60: What is Software Compartmentalization?
	Slide 61: What is Software Compartmentalization?
	Slide 62: What is Software Compartmentalization?
	Slide 63: What is Software Compartmentalization?
	Slide 64: What is Software Compartmentalization?
	Slide 65: What is Software Compartmentalization?
	Slide 66: What is Software Compartmentalization?
	Slide 67: What is Software Compartmentalization?
	Slide 68: What is Software Compartmentalization?
	Slide 69: What is Software Compartmentalization?
	Slide 70: My promise for this talk
	Slide 71: Bigger Picture of Compartmentalization
	Slide 72: Bigger Picture of Compartmentalization
	Slide 73: Bigger Picture of Compartmentalization
	Slide 74: Bigger Picture of Compartmentalization
	Slide 75: Bigger Picture of Compartmentalization
	Slide 76: How to determine the right policy to enforce?
	Slide 77: How to determine the right policy to enforce?
	Slide 78: How to determine the right policy to enforce?
	Slide 79: Policy Definition Methods
	Slide 80: Policy Definition Methods
	Slide 81: Policy Definition Methods
	Slide 82: Policy Definition Methods
	Slide 83: Policy Definition Methods
	Slide 84: Policy Definition Methods
	Slide 85: Policy Definition Methods
	Slide 86: Systematizing Policy Definition Methods
	Slide 87: Systematizing Policy Definition Methods
	Slide 88: Systematizing Policy Definition Methods
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101: Open Problem in Policy Definition Methods
	Slide 102: Open Problem in Policy Definition Methods
	Slide 103: Open Problem in Policy Definition Methods
	Slide 104: Open Problem in Policy Definition Methods
	Slide 105: Open Problem in Policy Definition Methods
	Slide 106: Open Problem in Policy Definition Methods
	Slide 107: Open Problem in Policy Definition Methods
	Slide 108: Bigger Picture of Compartmentalization
	Slide 109: How to implement policies?
	Slide 110: How to implement policies?
	Slide 111: How to implement policies?
	Slide 112: How to implement policies?
	Slide 113: How to implement policies?
	Slide 114: How to implement policies?
	Slide 115: How to implement policies?
	Slide 116: How to implement policies?
	Slide 117: How to implement policies?
	Slide 118: Compartmentalization Abstractions
	Slide 119: Compartmentalization Abstractions
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134: Open Problem in Compartmentalization Abstractions
	Slide 135: Open Problem in Compartmentalization Abstractions
	Slide 136: Open Problem in Compartmentalization Abstractions
	Slide 137: Open Problem in Compartmentalization Abstractions
	Slide 138: Open Problem in Compartmentalization Abstractions
	Slide 139: Open Problem in Compartmentalization Abstractions
	Slide 140: Open Problem in Compartmentalization Abstractions
	Slide 141: Open Problem in Compartmentalization Abstractions
	Slide 142: Open Problem in Compartmentalization Abstractions
	Slide 143: Open Problem in Compartmentalization Abstractions
	Slide 144: Open Problem in Compartmentalization Abstractions
	Slide 145: Open Problem in Compartmentalization Abstractions
	Slide 146: Bigger Picture of Compartmentalization
	Slide 147: How to enforce policies?
	Slide 148: How to enforce policies?
	Slide 149: How to enforce policies?
	Slide 150: How to enforce policies?
	Slide 151: How to enforce policies?
	Slide 152: How to enforce policies?
	Slide 153: Enforcement Mechanisms
	Slide 154: Enforcement Mechanisms
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167: Open Problem in Enforcement Mechanisms
	Slide 168: Open Problem in Enforcement Mechanisms
	Slide 169: Open Problem in Enforcement Mechanisms
	Slide 170: Open Problem in Enforcement Mechanisms
	Slide 171: Open Problem in Enforcement Mechanisms
	Slide 172: Open Problem in Enforcement Mechanisms
	Slide 173: My promise for this talk
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223

