
Software Compartmentalization
Everywhere - What Will it Take?

C&ESAR 2025, November 19, 2025

Hugo Lefeuvre
Postdoctoral Research Fellow
University of British Columbia

Vancouver ()

Historically, program = unit of trust

2

Process

Operating System Kernel

libcrypto

C library

Rust module

libjpeg

In-house
Component

External
component

Historically, program = unit of trust

Example: fictive application

Unit of isolation

3

Operating System Kernel

libcrypto

C library

Rust module

libjpeg

In-house
Component

External
component

Historically, program = unit of trust

Attacker exploits bug in
one of the libraries

Example: fictive application

Unit of isolation

Process

4

Operating System Kernel

libcrypto

C library

Rust module

libjpeg

In-house
Component

External
component

Historically, program = unit of trust

Attacker exploits bug in
one of the libraries

Spreads trivially because
of ambient trust

Example: fictive application

Unit of isolation

Process

5

Operating System Kernel

Historically, program = unit of trust

This historical approach is
increasingly problematic

libcrypto

C library

Rust module

libjpeg

In-house
Component

External
component

Attacker exploits bug in
one of the libraries

Spreads trivially because
of ambient trust

Example: fictive application

Unit of isolation

Process

6

Operating System Kernel

libcrypto

C library

Rust module

libjpeg

In-house
Component

External
component

Historically, program = unit of trust

This historical approach is
increasingly problematic

Modern programs are
deeply heterogeneousProcess

7

Among others...

Operating System Kernel

libcrypto

C library

Rust module

libjpeg

In-house
Component

External
component

Different origins...

Historically, program = unit of trust

This historical approach is
increasingly problematic

Modern programs are
deeply heterogeneousProcess

8

Among others...

Operating System Kernel

libcrypto

C library

Rust module

libjpeg

In-house
Component

External
component

Different
programming
languages...

Different origins...

Historically, program = unit of trust

This historical approach is
increasingly problematic

Modern programs are
deeply heterogeneousProcess

9

Among others...

Operating System Kernel

libcrypto

C library

Rust module

libjpeg

In-house
Component

External
component

Different
programming
languages...

Different origins... Different degrees of risk...

Historically, program = unit of trust

This historical approach is
increasingly problematic

Modern programs are
deeply heterogeneousProcess

10

Among others...

Operating System Kernel

libcrypto

C library

Rust module

libjpeg

In-house
Component

External
component

Different
programming
languages...

Different origins... Different degrees of risk...

More or less valuable data...

Historically, program = unit of trust

This historical approach is
increasingly problematic

Modern programs are
deeply heterogeneousProcess

11

Among others...

Operating System Kernel

libcrypto

C library

Rust module

libjpeg

In-house
Component

External
component

Different
programming
languages...

Different origins... Different degrees of risk...

More or less valuable data...

Historically, program = unit of trust

This historical approach is
increasingly problematic

Modern programs are
deeply heterogeneous

(1)

(1) 10th Annual State of the Software Supply Chain, Sonatype Inc.

The average application has around
180 open-source components —
that’s an increase from around 150
from which we found last year.

Process

12

Among others...

13

(1)

(1) https://www.theregister.com/2024/07/23/crowdstrike_failure_shows_need_for/

Illustration of this problem:
Last year's Crowdstrike disaster where a bug in an
external antivirus plug-in crashes millions of computers

14

"Just a crash": what if it had
been a supply-chain attack?

(1)

(1) https://www.theregister.com/2024/07/23/crowdstrike_failure_shows_need_for/

Illustration of this problem:
Last year's Crowdstrike disaster where a bug in an
external antivirus plug-in crashes millions of computers

Program = single unit of trust

(1)

15

Illustration of this problem:
Last year's Crowdstrike disaster where a bug in an
external antivirus plug-in crashes millions of computers

"Just a crash": what if it had
been a supply-chain attack?

(1) https://www.theregister.com/2024/07/23/crowdstrike_failure_shows_need_for/

Compartmentalization

16

Compartmentalization

17

Software compartmentalization =
• design programs split into distrusting and isolated components
• such that if one of the components is breached, the attacker does

not compromise the whole program

HTTP
Parser

Monolithic

FastCGI
Module

SSL
Library

...

Compartmentalization

18
Example: a web server (Apache)

Software compartmentalization =
• design programs split into distrusting and isolated components
• such that if one of the components is breached, the attacker does

not compromise the whole program

HTTP
Parser

Monolithic

FastCGI
Module

SSL
Library

...

Direct access

Compartmentalization

19
Example: a web server (Apache)

Software compartmentalization =
• design programs split into distrusting and isolated components
• such that if one of the components is breached, the attacker does

not compromise the whole program

HTTP
Parser

Monolithic

FastCGI
Module

SSL
Library

... Compartmentalization

HTTP
Parser

Compartmentalized

FastCGI
Module

SSL
Library

...

Direct access Isolation confines attacker

Isolation boundary

Compartmentalization

20
Example: a web server (Apache)

Software compartmentalization =
• design programs split into distrusting and isolated components
• such that if one of the components is breached, the attacker does

not compromise the whole program

Compartmentalization is applied to high-profile software

Web BrowsersServer Software But also...

Compartmentalization

21

Software compartmentalization =
• design programs split into distrusting and isolated components
• such that if one of the components is breached, the attacker does

not compromise the whole program

Compartmentalization is applied to high-profile software

Web BrowsersServer Software But also...

Compartmentalization

22

Software compartmentalization =
• design programs split into distrusting and isolated components
• such that if one of the components is breached, the attacker does

not compromise the whole program

Significant research funding
in recent years

£70M

$50M

£12M

We know from this experience that compartmentalization works

23

We know from this experience that compartmentalization works

• OpenSSH is vulnerable to a bug
with remote-code execution

• It is exploitable: attackers can break
allocator-based mitigations

• Compartmentalization ultimately
mitigates the exploit by containing
it in an unprivileged process

(1)

(1) https://seclists.org/oss-sec/2023/q1/92

24

We know from this experience that compartmentalization works

• OpenSSH is vulnerable to a bug
with remote-code execution

• It is exploitable: attackers can break
allocator-based mitigations

• Compartmentalization ultimately
mitigates the exploit by containing
it in an unprivileged process

(1)

(1) https://seclists.org/oss-sec/2023/q1/92

25

We know from this experience that compartmentalization works

• OpenSSH is vulnerable to a bug
with remote-code execution

• It is exploitable: attackers can break
allocator-based mitigations

• Compartmentalization ultimately
mitigates the exploit by containing
it in an unprivileged process

(1)

(1) https://seclists.org/oss-sec/2023/q1/92

26

Yet, in 2025, compartmentalization is not a widespread practice

27

Yet, in 2025, compartmentalization is not a widespread practice

Beyond the popular software I mentioned
earlier, compartmentalization is rather rare

28

Yet, in 2025, compartmentalization is not a widespread practice

Beyond the popular software I mentioned
earlier, compartmentalization is rather rare

"Less than 56 apps out of the 1,520 most popular
Debian applications are compartmentalized"

(1) Lefeuvre et al., SoK: Software Compartmentalization, S&P 2025

(1)

29

Why?

Why?

(1) Lefeuvre et al., SoK: Software Compartmentalization, S&P 2025

(1)

Here is how we approached the question:

• Started by making a fundamental observation: experts do
not even agree on what compartmentalization is
• Define a fundamental model and consistent terminology for

compartmentalization

• Propose a taxonomy for evaluating compartmentalization
approaches and apply it systematically to a wide set (200+)
of research and mainstream efforts

• From this: extract a set of core challenges

32

Systematizing Compartmentalization

Here is how we approached the question:

• Started by making a fundamental observation: experts do
not even agree on what compartmentalization is
• Define a fundamental model and consistent terminology for

compartmentalization

• Propose a taxonomy for evaluating compartmentalization
approaches and apply it systematically to a wide set (200+)
of research and mainstream efforts

• From this: extract a set of core challenges

33

Systematizing Compartmentalization

Here is how we approached the question:

• Started by making a fundamental observation: experts do
not even agree on what compartmentalization is
• Define a fundamental model and consistent terminology for

compartmentalization

• Propose a taxonomy for evaluating compartmentalization
approaches and apply it systematically to a wide set (200+)
of research and mainstream efforts

• From this: extract a set of core challenges

34

Systematizing Compartmentalization

35

Systematizing Compartmentalization

Here is how we approached the question:

• Started by making a fundamental observation: experts do
not even agree on what compartmentalization is
• Define a fundamental model and consistent terminology for

compartmentalization

• Propose a taxonomy for evaluating compartmentalization
approaches and apply it systematically to a wide set (200+)
of research and mainstream efforts

• From this: extract a set of core challenges

My promise for this talk

1. What is software compartmentalization? (slightly more formal)
2. A systematic perspective on compartmentalization
3. The why: compartmentalization everywhere, what will it take?

A journey through twenty years of
compartmentalization

My promise for this talk

1. What is software compartmentalization? (slightly more formal)
2. A systematic perspective on compartmentalization
3. The why: compartmentalization everywhere, what will it take?

A journey through twenty years of
compartmentalization

What is Software Compartmentalization?

38

Software compartmentalization is...
• a software engineering practice where developers break down a

program into groups of isolated/distrusting compartments, each
controlling only the resources they precisely require

• an embodiment of the principle of least-privilege

Fundamental idea:
• if a component is compromised, attackers are restricted to the

permissions of the compromised component
• to escalate privileges and compromise the rest of the system, attackers

must find and exploit additional software vulnerabilities

What is Software Compartmentalization?

39

Software compartmentalization is...
• a software engineering practice where developers break down a

program into groups of isolated/distrusting components, each
controlling only the resources they precisely require

• an embodiment of the principle of least-privilege

Fundamental idea:
• if a component is compromised, attackers are restricted to the

permissions of the compromised component
• to escalate privileges and compromise the rest of the system, attackers

must find and exploit additional software vulnerabilities

What is Software Compartmentalization?

40

Software compartmentalization is...
• a software engineering practice where developers break down a

program into groups of isolated/distrusting components, each
controlling only the resources they precisely require

• an embodiment of the principle of least-privilege

Fundamental idea:
• if a component is compromised, attackers are restricted to the

permissions of the compromised component
• to escalate privileges and compromise the rest of the system, attackers

must find and exploit additional software vulnerabilities

What is Software Compartmentalization?

41

Software compartmentalization is...
• a software engineering practice where developers break down a

program into groups of isolated/distrusting components, each
controlling only the resources they precisely require

• an embodiment of the principle of least-privilege

Fundamental idea:
• if a component is compromised, attackers are restricted to the

permissions of the compromised component
• to escalate privileges and compromise the rest of the system, attackers

must find and exploit additional software vulnerabilities

What is Software Compartmentalization?

42

Software compartmentalization is...
• a software engineering practice where developers break down a

program into groups of isolated/distrusting components, each
controlling only the resources they precisely require

• an embodiment of the principle of least-privilege

Fundamental idea:
• if a component is compromised, attackers are restricted to the

permissions of the compromised component
• to escalate privileges and compromise the rest of the system, attackers

must find and exploit additional software vulnerabilities

What is Software Compartmentalization?

43

Software compartmentalization is...
• a software engineering practice where developers break down a

program into groups of isolated/distrusting components, each
controlling only the resources they precisely require

• an embodiment of the principle of least-privilege

Fundamental idea:
• if a component is compromised, attackers are restricted to the

permissions of the compromised component
• to escalate privileges and compromise the rest of the system, attackers

must find and exploit additional software vulnerabilities

What is Software Compartmentalization?

44

Web Server

HTTP
Parser

SSL Keys

FastCGI
Module

...

Monolithic

Going back to our previous example...
Isolation Boundary

Web Server

HTTP
Parser

SSL Keys

FastCGI
Module

...

Compartmentalized

Compartmentalization

"SW Engineering Practice"

Direct access Isolation prevents leak

What is Software Compartmentalization?

45

Web Server

HTTP
Parser

SSL Keys

FastCGI
Module

...

Monolithic

Going back to our previous example...
Isolation Boundary

Web Server

HTTP
Parser

SSL Keys

FastCGI
Module

...

Compartmentalized

Compartmentalization

"SW Engineering Practice"

Components now distrust each other

Protection Domain

Direct access Isolation prevents leak

What is Software Compartmentalization?

46

Going back to our previous example...
Isolation Boundary

Web Server

HTTP
Parser

SSL Keys

FastCGI
Module

...

Compartmentalized

Compartmentalizing adds a (potentially
very tricky) step on the attacker's path
towards taking over the program

Components now distrust each other

Protection Domain

Isolation prevents leak

What is Software Compartmentalization?

47

Software compartmentalization is applicable to any kind of program

Microkernels

Web Browsers Server Software

What is Software Compartmentalization?

48

Applications

Microkernels

Web Browsers Server Software

Software compartmentalization is applicable to any kind of program

What is Software Compartmentalization?

49

Web Browsers Server Software

Microkernels

OS kernels

Software compartmentalization is applicable to any kind of program

What is Software Compartmentalization?

50

Microkernels

Web Browsers Server Software

But also: hypervisors, firmware, etc.

Software compartmentalization is applicable to any kind of program

What is Software Compartmentalization?

51

Software compartmentalization can be applied to new as well as
existing programs:
• When applied to existing programs, we talk about retrofitting

Some programs which included compartmentalization in their
design in the first place (non-exhaustive!):

...and some where it was retrofitted:

What is Software Compartmentalization?

52

Software compartmentalization can be applied to new as well as
existing programs:
• When applied to existing programs, we talk about retrofitting

Some programs which included compartmentalization in their
design in the first place (non-exhaustive!):

...and some where it was retrofitted:

*Mail transfer agent, one of the first compartmentalized
programs to the best of my knowledge

*

What is Software Compartmentalization?

53

Software compartmentalization can be applied to new as well as
existing programs:
• When applied to existing programs, we talk about retrofitting

Some programs which included compartmentalization in their
design in the first place (non-exhaustive!):

...and some where it was retrofitted:

*

*Mail transfer agent, one of the first compartmentalized
programs to the best of my knowledge

What is Software Compartmentalization?

54

Still, software compartmentalization as we refer to here applies within
one program, not across programs

What is Software Compartmentalization?

55

Still, software compartmentalization as we refer to here applies within
one program, not across programs

Web Server

HTTP
Parser

SSL Keys

FastCGI
Module

...

Isolation Boundary

Within one program
SW Compartmentalization

What is Software Compartmentalization?

56

Still, software compartmentalization as we refer to here applies within
one program, not across programs

Web Server

HTTP
Parser

SSL Keys

FastCGI
Module

...

Isolation Boundary

Operating System

...

Within one program Across programs
Not SW CompartmentalizationSW Compartmentalization

Within one program
SW Compartmentalization

What is Software Compartmentalization?

57

Still, software compartmentalization as we refer to here applies within
one program, not across programs

Web Server

HTTP
Parser

SSL Keys

FastCGI
Module

...

Isolation Boundary

Operating System

...

More general isolation: share challenges and solutions
with software compartmentalization as we define it

Across programs
Not SW Compartmentalization

Within one program
SW Compartmentalization

What is Software Compartmentalization?

58

Still, software compartmentalization as we refer to here applies within
one program, not across programs

Web Server

HTTP
Parser

SSL Keys

FastCGI
Module

...

Isolation Boundary

Operating System

...

More general isolation: share challenges and solutions
with software compartmentalization as we define it

Across programs
Not SW Compartmentalization

(1) Shu et al., A Study of Security Isolation Techniques, CSUR 2016

(1)

What is Software Compartmentalization?

59

Software compartmentalization can target different trust models

What is Software Compartmentalization?

60

Software compartmentalization can target different trust models

Sandbox

...

...

...

Isolation Boundary

Sandbox: component isolated to
protect the rest of the system

All but the sandbox is trusted

What is Software Compartmentalization?

61

Software compartmentalization can target different trust models

Sandbox

...

...

...

Isolation Boundary

Safebox

...

...

...

Mutual
Distrust

Mutual
Distrust

Mutual
Distrust

...

Sandbox: component isolated to
protect the rest of the system

All but the sandbox is trusted

Safebox: component isolated to
protect it from others

Only safebox is trusted

Mutual distrust: components
distrust each other

What is Software Compartmentalization?

62

Software compartmentalization can target different trust models

Sandbox

...

...

...

Isolation Boundary

Safebox

...

...

...

Sandbox: component isolated to
protect the rest of the system

All but the sandbox is trusted

Safebox: component isolated to
protect it from others

Only the safebox is trusted

What is Software Compartmentalization?

63

Software compartmentalization can target different trust models

Sandbox

...

...

...

Isolation Boundary

Safebox

...

...

...

Mutual
Distrust

Mutual
Distrust

Mutual
Distrust

...

Sandbox: component isolated to
protect the rest of the system

All but the sandbox is trusted

Safebox: component isolated to
protect it from others

Only the safebox is trusted

Mutual distrust: components
distrust each other

What is Software Compartmentalization?

64

Software compartmentalization can target different trust models

Sandbox

...

...

...

Isolation Boundary

Safebox

...

...

...

Mutual
Distrust

Mutual
Distrust

Mutual
Distrust

...

Sandbox: component isolated to
protect the rest of the system

All but the sandbox is trusted

Safebox: component isolated to
protect it from others

Only the safebox is trusted

Mutual distrust: components
distrust each other

(1) (2) (3)

(1) https://fr.wikipedia.org/wiki/Panoptique#/media/Fichier:Kilmainham_1.JPG (2) https://en.wikipedia.org/wiki/Bank_vault#/media/File:WinonaSavingsBankVault.JPG (3) https://en.wikipedia.org/wiki/File:Panmunjeom_DMZ.png

These trust models are
distinct and result in different

software architectures

What is Software Compartmentalization?

65

Software compartmentalization can target different properties

What is Software Compartmentalization?

66

Software compartmentalization can target different properties

Distrusted ...

Write

Isolation Boundary

Integrity: compartment cannot
alter other compartment's data

What is Software Compartmentalization?

67

Software compartmentalization can target different properties

Distrusted ...

Write

Isolation Boundary

Distrusted ...

Read

Integrity: compartment cannot
alter other compartment's data

Confidentiality: compartment
cannot read other
compartment's data

What is Software Compartmentalization?

68

Software compartmentalization can target different properties

Distrusted ...

Write

Isolation Boundary

Distrusted ...

Read

Distrusted ...

DoS

Integrity: compartment cannot
alter other compartment's data

Confidentiality: compartment
cannot read other
compartment's data

Availability: compartment
cannot prevent other
compartments from operating

What is Software Compartmentalization?

69

Software compartmentalization can target different properties

Distrusted ...

Write

Isolation Boundary

Distrusted ...

Read

Distrusted ...

DoS

Integrity: compartment cannot
alter other compartment's data

Confidentiality: compartment
cannot read other
compartment's data

Availability: compartment
cannot prevent other
compartments from operating

Necessary: no confidentiality or
availability without integrity

My promise for this talk

1. What is software compartmentalization? (slightly more formal)
2. A systematic perspective on compartmentalization
3. The why: compartmentalization everywhere, what will it take?

A journey through twenty years of
compartmentalization

Take a step back: How do practitioners compartmentalize?
What does research say? What are open challenges?

Bigger Picture of Compartmentalization

71

Propose to view compartmentalization as 3 problems:

1. How to determine the right policy to enforce?
o Done with a policy definition method

2. How to integrate the notion of compartmentalization
policies in software / programming models / idioms?
o Done with a compartmentalization abstraction

3. How to enforce policies at runtime?
o Done with a compartmentalization mechanism

Bigger Picture of Compartmentalization

72

Propose to view compartmentalization as 3 problems:

1. How to determine the right policy to enforce?
o Done with a policy definition method

2. How to integrate the notion of compartmentalization
policies in software / programming models / idioms?
o Done with a compartmentalization abstraction

3. How to enforce policies at runtime?
o Done with a compartmentalization mechanism

Bigger Picture of Compartmentalization

73

Propose to view compartmentalization as 3 problems:

1. How to determine the right policy to enforce?
o Done with a policy definition method

2. How to integrate the notion of compartmentalization
policies in software / programming models / idioms?
o Done with a compartmentalization abstraction

3. How to enforce policies at runtime?
o Done with a compartmentalization mechanism

Bigger Picture of Compartmentalization

74

Propose to view compartmentalization as 3 problems:

1. How to determine the right policy to enforce?
o Done with a policy definition method

2. How to integrate the notion of compartmentalization
policies in software / programming models / idioms?
o Done with a compartmentalization abstraction

3. How to enforce policies at runtime?
o Done with a compartmentalization mechanism

Bigger Picture of Compartmentalization

75

1. How to determine the right policy to enforce?
o Done with a policy definition method

2. How to integrate the notion of compartmentalization
policies in software / programming models / idioms?
o Done with a compartmentalization abstraction

3. How to enforce policies at runtime?
o Done with a compartmentalization mechanism

Propose to view compartmentalization as 3 problems:

How to determine the right policy to enforce?

76

Problem #1

Developers must define which components are to be separated and
which properties should be enforced on the resulting compartments
• The result is a compartmentalization policy

How to determine the right policy to enforce?

77

Developers must define which components are to be separated and
which properties should be enforced on the resulting compartments
• The result is a compartmentalization policy

Problem #1

How to determine the right policy to enforce?

78

Developers must define which components are to be separated and
which properties should be enforced on the resulting compartments
• The result is a compartmentalization policy

To design policies, developers employ a
Policy Definition Method

Problem #1

Policy Definition Methods

79

Historically, people have done this manually.

Policy Definition Methods

80

Historically, people have done this manually.

Example: we want to split this C program.

HTTP
Parser

(Fictive monolithic program)

FastCGI
Module

SSL
Library

...

Policy Definition Methods

81

Historically, people have done this manually.

Example: we want to split this C program.

HTTP
Parser

(Fictive monolithic program)

FastCGI
Module

SSL
Library

...

A developer looks attentively at the program...

HTTP
Parser

Policy Definition Methods

82

Historically, people have done this manually.

Example: we want to split this C program.

HTTP
Parser

(Fictive monolithic program)

FastCGI
Module

SSL
Library

...

Network-exposed

had CVEscomplex

"I do not trust this
component"

A developer looks attentively at the program...

Policy Definition Methods

83

Historically, people have done this manually.

Example: we want to split this C program.

HTTP
Parser

(Fictive monolithic program)

FastCGI
Module

SSL
Library

...

"I do not trust this
component"

HTTP
Parser

HTTP
Parser

sandbox

A developer looks attentively at the program...

Policy Definition Methods

84

Historically, people have done this manually.

Example: we want to split this C program.

HTTP
Parser

(Fictive monolithic program)

FastCGI
Module

SSL
Library

...

SSL
Library

HTTP
Parser

HTTP
Parser

sandbox

"I particularly value
this component"

Holds session keys

Formally-verified

"I do not trust this
component"

A developer looks attentively at the program...

Policy Definition Methods

85

Historically, people have done this manually.

Example: we want to split this C program.

HTTP
Parser

(Fictive monolithic program)

FastCGI
Module

SSL
Library

...

HTTP
Parser

SSL
Library

"I do not trust this
component"

"I particularly value
this component"

This is still the most common way to do it today.

safebox

sandbox

SSL
Library

HTTP
Parser

A developer looks attentively at the program...

(1) Lefeuvre et al., SoK: Software
Compartmentalization, S&P 2025

Policy Definition Methods are a very active research
area, with goals such as...

We systematized these works in our SoK

Maximize security of interfaces
Maximize soundness

Minimize developer effort
Maximize performance

Minimize over-privilege
(1)

Systematizing Policy Definition Methods

86

87

Policy Definition Methods are a very active research
area, with goals such as...

We systematized these works in our SoK

Maximize security of interfaces
Maximize soundness

Minimize developer effort
Maximize performance

Minimize over-privilege

(1) Lefeuvre et al., SoK: Software
Compartmentalization, S&P 2025

(1)

Systematizing Policy Definition Methods

Systematizing Policy Definition Methods

88

Policy definition methods table from the paper

89

Names of the policy definition methods we consider

Characteristics we included in the taxonomy

90

Names of the policy definition methods we consider

Characteristics we included in the taxonomy

91

Names of the policy definition methods we consider

Characteristics we included in the taxonomy

This talk: present a few interesting aspects, many more in the paper

92

Automation is a key research topic in PDMs

Entirely
manual

Fully
automated

93

Automation is a key research topic in PDMs

Entirely
manual

Fully
automated They achieve automation

leveraging different kinds of
inputs from developers.

94

Automation is a key research topic in PDMs

Entirely
manual

Fully
automated They employ different kinds

of analysis techniques (static,
dynamic, hybrid)

95

Automation is a key research topic in PDMs

Entirely
manual

Fully
automated

Specializing on a particular
programming language is often
necessary to simplify the problem

96

Pick one influential example from the literature: PtrSplit

(1) Liu et al., PtrSplit: Supporting General Pointers in Automatic Program Partitioning, CCS 2017

(1)

97

Pick one influential example from the literature: PtrSplit

(1) Liu et al., PtrSplit: Supporting General Pointers in Automatic Program Partitioning, CCS 2017

(1)

Semi-automated tool
for safeboxing code

98

Annotate valuable data,
PtrSplit then automatically
cuts the program to
safebox them

Pick one influential example from the literature: PtrSplit

(1) Liu et al., PtrSplit: Supporting General Pointers in Automatic Program Partitioning, CCS 2017

(1)

Semi-automated tool
for safeboxing code

99

The program is then
split at arbitrary

function boundaries

Pick one influential example from the literature: PtrSplit

(1) Liu et al., PtrSplit: Supporting General Pointers in Automatic Program Partitioning, CCS 2017

(1)

Annotate valuable data,
PtrSplit then automatically
cuts the program to
safebox them

Semi-automated tool
for safeboxing code

100

Semi-automated tool
for safeboxing code

The program is then
split at arbitrary

function boundaries

The split is done statically by
the tool, i.e., just by looking at
the code (vs. a dynamic tool
that would run the program)

Pick one influential example from the literature: PtrSplit

(1) Liu et al., PtrSplit: Supporting General Pointers in Automatic Program Partitioning, CCS 2017

(1)

Annotate valuable data,
PtrSplit then automatically
cuts the program to
safebox them

101

Automated Policy Definition Methods trade off
security and/or performance for developer effort.

Open Problem in Policy Definition Methods

Automated methods struggle to do that since the
semantics of programs fundamentally cannot be
captured automatically.

Which trade-offs are desirable in practice?

HTTP
Parser

(Fictive monolithic program)

FastCGI
Module

SSL
Library

...

Network

Take our example: our split cuts a hot path. We can
spend more developer time to look attentively and
refine our cut to avoid the critical code paths.

Take our example: our split cuts a hot path. We can
spend more developer time to look attentively and
refine our cut to avoid the critical code paths.

102

Automated Policy Definition Methods trade off
security and/or performance for developer effort.

Open Problem in Policy Definition Methods

Automated methods struggle to do that since the
semantics of programs fundamentally cannot be
captured automatically.

Which trade-offs are desirable in practice?

HTTP
Parser

(Fictive monolithic program)

FastCGI
Module

SSL
Library

...

Network

Take our example: our split cuts a hot path. We can
spend more developer time to look attentively and
refine our cut to avoid the critical code paths.

103

Automated Policy Definition Methods trade off
security and/or performance for developer effort.

Open Problem in Policy Definition Methods

Automated methods struggle to do that since the
semantics of programs fundamentally cannot be
captured automatically.

Which trade-offs are desirable in practice?

HTTP
Parser

(Fictive monolithic program)

FastCGI
Module

SSL
Library

...

Network

104

Automated Policy Definition Methods trade off
security and/or performance for developer effort.

Open Problem in Policy Definition Methods

Automated methods struggle to do that since the
semantics of programs fundamentally cannot be
captured automatically.

Which trade-offs are desirable in practice?

HTTP
Parser

(Fictive monolithic program)

FastCGI
Module

SSL
Library

...
Take our example: our split cuts a hot path. We can
spend more developer time to look attentively and
refine our cut to avoid the critical code paths.

Network

Cuts a hot path

105

Automated Policy Definition Methods trade off
security and/or performance for developer effort.

Open Problem in Policy Definition Methods

Automated methods struggle to do that since the
semantics of programs fundamentally cannot be
captured automatically.

Which trade-offs are desirable in practice?

HTTP
Parser

(Fictive monolithic program)

FastCGI
Module

SSL
Library

...

Network

Take our example: our split cuts a hot path. We can
spend more developer time to look attentively and
refine our cut to avoid the critical code paths.

106

Automated Policy Definition Methods trade off
security and/or performance for developer effort.

Open Problem in Policy Definition Methods

Automated methods struggle to do that since the
semantics of programs fundamentally cannot be
captured automatically.

Which trade-offs are desirable in practice?

HTTP
Parser

(Fictive monolithic program)

FastCGI
Module

SSL
Library

...

Network

Rice's theorem: "non-trivial semantic
properties of programs are undecidable".

Take our example: our split cuts a hot path. We can
spend more developer time to look attentively and
refine our cut to avoid the critical code paths.

107

Automated Policy Definition Methods trade off
security and/or performance for developer effort.

Open Problem in Policy Definition Methods

Automated methods struggle to do that since the
semantics of programs fundamentally cannot be
captured automatically.

Which trade-offs are desirable in practice?

HTTP
Parser

(Fictive monolithic program)

FastCGI
Module

SSL
Library

...

Network

Rice's theorem: "non-trivial semantic
properties of programs are undecidable".

Take our example: our split cuts a hot path. We can
spend more developer time to look attentively and
refine our cut to avoid the critical code paths.

Bigger Picture of Compartmentalization

108

1. How to determine the right policy to enforce?
o Done with a policy definition method

2. How to integrate the notion of compartmentalization
policies in software / programming models / idioms?
o Done with a compartmentalization abstraction

3. How to enforce policies at runtime?
o Done with a compartmentalization mechanism

Propose to view compartmentalization as 3 problems:

How to implement policies?

109

Having defined a policy, we need to express it in the program.
Developers perform this using programming abstractions.

Problem #2

How to implement policies?

110

Having defined a policy, we need to express it in the program.
Developers perform this using programming abstractions.

Problem #2

Historically, people have done this with processes (=the process abstraction).

How to implement policies?

111

Having defined a policy, we need to express it in the program.
Developers perform this using programming abstractions.

Example: assume we sandbox the HTTP parser.
HTTP
Parser

(Fictive monolithic program)

FastCGI
Module

SSL
Library

...
HTTP
Parser

HTTP
Parser

Problem #2

Historically, people have done this with processes (=the process abstraction).

fork()

setuid() seccomp()

chroot()Setup IPC...

This is still the most common way to do it today.

How to implement policies?

112

Having defined a policy, we need to express it in the program.
Developers perform this using programming abstractions.

Example: assume we sandbox the HTTP parser.
HTTP
Parser

(Fictive monolithic program)

FastCGI
Module

SSL
Library

...
HTTP
Parser

HTTP
Parser

Problem #2

fork()

setuid() seccomp()

chroot()Setup IPC...

Historically, people have done this with processes (=the process abstraction).

This is still the most common way to do it today.

How to implement policies?

113

Having defined a policy, we need to express it in the program.
Developers perform this using programming abstractions.

Example: assume we sandbox the HTTP parser.
HTTP
Parser

(Fictive monolithic program)

FastCGI
Module

SSL
Library

...
HTTP
Parser

HTTP
Parser

Problem #2

fork()

setuid() seccomp()

chroot()Setup IPC...

Historically, people have done this with processes (=the process abstraction).

This is still the most common way to do it today.

How to implement policies?

114

Having defined a policy, we need to express it in the program.
Developers perform this using programming abstractions.

Example: assume we sandbox the HTTP parser.
HTTP
Parser

(Fictive monolithic program)

FastCGI
Module

SSL
Library

...
HTTP
Parser

HTTP
Parser

fork()

setuid() seccomp()

chroot()Setup IPC...

Problem #2

Historically, people have done this with processes (=the process abstraction).

This is still the most common way to do it today.

How to implement policies?

115

Having defined a policy, we need to express it in the program.
Developers perform this using programming abstractions.

Example: assume we sandbox the HTTP parser.
HTTP
Parser

(Fictive monolithic program)

FastCGI
Module

SSL
Library

...
HTTP
Parser

HTTP
Parser

fork()

setuid() seccomp()

chroot()Setup IPC...

Problem #2

Historically, people have done this with processes (=the process abstraction).

This is still the most common way to do it today.

How to implement policies?

116

Having defined a policy, we need to express it in the program.
Developers perform this using programming abstractions.

Example: assume we sandbox the HTTP parser.
HTTP
Parser

(Fictive monolithic program)

FastCGI
Module

SSL
Library

...
HTTP
Parser

HTTP
Parser

fork()

setuid() seccomp()

chroot()Setup IPC...

Problem #2

Historically, people have done this with processes (=the process abstraction).

This is still the most common way to do it today.

How to implement policies?

117

Having defined a policy, we need to express it in the program.
Developers perform this using programming abstractions.

Example: assume we sandbox the HTTP parser.
HTTP
Parser

(Fictive monolithic program)

FastCGI
Module

SSL
Library

...
HTTP
Parser

HTTP
Parser

fork()

setuid() seccomp()

chroot()Setup IPC...

Historically, people have done this with processes (=the process abstraction).

This is still the most common way to do it today.

Problem #2

Programming abstractions for compartmentalization are also a
very active research area:

(1) Lefeuvre et al., SoK: Software
Compartmentalization, S&P 2025

(1)

Compartmentalization Abstractions

Maximize security properties that can be achieved

Making the most of a specific
enforcement mechanism

Minimize developer effort (intuitive, easy to use)

Leverage domain-specific knowledge (threat model, deployment)

Support generic mechanisms

118

119

(1) Lefeuvre et al., SoK: Software
Compartmentalization, S&P 2025

(1)

Compartmentalization Abstractions
Programming abstractions for compartmentalization are also a
very active research area:

Maximize security properties that can be achieved

Making the most of a specific
enforcement mechanism

Minimize developer effort (intuitive, easy to use)

Leverage domain-specific knowledge (threat model, deployment)

Support generic mechanisms

120

121

Names of the abstractions we consider Characteristics we included in the taxonomy

122

Names of the abstractions we consider Characteristics we included in the taxonomy

123

This talk: present a few interesting aspects, full discussion in the paper

124

Abstractions often specialize on a particular threat model

For safeboxing
(crypto keys,
privileged code)

For sandboxing
(libraries, drivers)

125

A lot of interest in abstractions for kernel compartmentalization

Compartmentalize
userland and kernel

together

Kernel only...

Or hypervisors

126

A lot of interest in rethinking communication and sharing between domains

Leverage shared memory to
speed up sharing between
domains (vs. message passing)

Exposing communication
between domains as function
calls (vs. IPCs) to be more intuitive

127

Interest in abstractions that compose with different isolation mechanisms

For example: new abstractions that
leverage the specifics of safe
languages for isolation

128

Pick one influential example from the literature: RLBox

(1) Narayan et al., Retrofitting Fine Grain Isolation in the Firefox Renderer, USENIX Security 2020

(1)

129

Pick one influential example from the literature: RLBox

(1) Narayan et al., Retrofitting Fine Grain Isolation in the Firefox Renderer, USENIX Security 2020

(1)

Abstraction specialized
for sandboxing untrusted

code (such as libraries)

130

Pick one influential example from the literature: RLBox

(1) Narayan et al., Retrofitting Fine Grain Isolation in the Firefox Renderer, USENIX Security 2020

(1)

Abstraction specialized
for sandboxing untrusted

code (such as libraries)

Implements cross-compartment
communication with function

calls, which is intuitive

131

Pick one influential example from the literature: RLBox

(1) Narayan et al., Retrofitting Fine Grain Isolation in the Firefox Renderer, USENIX Security 2020

(1)

Abstraction specialized
for sandboxing untrusted

code (such as libraries)

Builds on shared memory to speed
up cross-compartment data sharing

Implements cross-compartment
communication with function

calls, which is intuitive

132

Pick one influential example from the literature: RLBox

(1) Narayan et al., Retrofitting Fine Grain Isolation in the Firefox Renderer, USENIX Security 2020

(1)

Abstraction specialized
for sandboxing untrusted

code (such as libraries)

Builds on shared memory to speed
up cross-compartment data sharing

Implements cross-compartment
communication with function

calls, which is intuitive

Enforces confidentiality and integrity

133

Pick one influential example from the literature: RLBox

(1) Narayan et al., Retrofitting Fine Grain Isolation in the Firefox Renderer, USENIX Security 2020

(1)

Implements cross-compartment
communication with function

calls, which is intuitive

Builds on shared memory to speed
up cross-compartment data sharing

Abstraction specialized
for sandboxing untrusted

code (such as libraries)

Enforces confidentiality and integrity

Does not depend on a specific
enforcement mechanism

134

Open Problem in Compartmentalization
Abstractions

HTTP
Parser

FastCGI
Module

SSL
Library

...

Hardening compartment interfaces is key to obtaining
strong security properties with compartmentalization

Example: assume the developer implemented our
boundaries. Compartments still need to
communicate, which opens an attack surface.

135

Open Problem in Compartmentalization
Abstractions

HTTP
Parser

FastCGI
Module

SSL
Library

...

Hardening compartment interfaces is key to obtaining
strong security properties with compartmentalization

Example: assume the developer implemented our
boundaries. Compartments still need to
communicate, which opens an attack surface.

136

Open Problem in Compartmentalization
Abstractions

HTTP
Parser

FastCGI
Module

SSL
Library

...

fastcgi_do(arguments)

Hardening compartment interfaces is key to obtaining
strong security properties with compartmentalization

Example: assume the developer implemented our
boundaries. Compartments still need to
communicate, which opens an attack surface.

137

Hardening compartment interfaces is key to obtaining
strong security properties with compartmentalization

Open Problem in Compartmentalization
Abstractions

Example: assume the developer implemented our
boundaries. Compartments still need to
communicate, which opens an attack surface.

fastcgi_do(0xdeadbeef)

fastcgi_do(0xvalid)

HTTP
Parser

FastCGI
Module

SSL
Library

...

138

Open Problem in Compartmentalization
Abstractions

(1) Lefeuvre et al., Assessing the Impact of Interface Vulnerabilities in Compartmentalized Software, NDSS'23

(1)

fastcgi_do(0xdeadbeef)

fastcgi_do(0xvalid)

HTTP
Parser

FastCGI
Module

SSL
Library

...

Hardening compartment interfaces is key to obtaining
strong security properties with compartmentalization

Example: assume the developer implemented our
boundaries. Compartments still need to
communicate, which opens an attack surface.

Hardening compartment interfaces is key to obtaining
strong security properties with compartmentalization

Example: assume the developer implemented our
boundaries. Compartments still need to
communicate, which opens an attack surface.

139

Open Problem in Compartmentalization
Abstractions

(1) Lefeuvre et al., Assessing the Impact of Interface Vulnerabilities in Compartmentalized Software, NDSS'23

(1)

fastcgi_do(0xdeadbeef)

fastcgi_do(0xvalid)

HTTP
Parser

FastCGI
Module

SSL
Library

...Most abstractions consider the hardening of
compartment interfaces an orthogonal problem.

140

Open Problem in Compartmentalization
Abstractions

We stress that abstractions can and should
facilitate the hardening of compartment interfaces.

(1) Lefeuvre et al., Assessing the Impact of Interface Vulnerabilities in Compartmentalized Software, NDSS'23

(1)

fastcgi_do(0xdeadbeef)

fastcgi_do(0xvalid)

HTTP
Parser

FastCGI
Module

SSL
Library

...

Hardening compartment interfaces is key to obtaining
strong security properties with compartmentalization

Example: assume the developer implemented our
boundaries. Compartments still need to
communicate, which opens an attack surface.

Most abstractions consider the hardening of
compartment interfaces an orthogonal problem.

How can abstractions that facilitate the
implementation of secure domain interfaces?

141

Open Problem in Compartmentalization
Abstractions

We stress that abstractions can and should
facilitate the hardening of compartment interfaces.

(1) Lefeuvre et al., Assessing the Impact of Interface Vulnerabilities in Compartmentalized Software, NDSS'23

(1)

fastcgi_do(0xdeadbeef)

fastcgi_do(0xvalid)

HTTP
Parser

FastCGI
Module

SSL
Library

...

Hardening compartment interfaces is key to obtaining
strong security properties with compartmentalization

Example: assume the developer implemented our
boundaries. Compartments still need to
communicate, which opens an attack surface.

Most abstractions consider the hardening of
compartment interfaces an orthogonal problem.

How can abstractions that facilitate the
implementation of secure domain interfaces?

142

Open Problem in Compartmentalization
Abstractions

Most abstractions consider the hardening of
compartment interfaces an orthogonal problem.

More work needed in that direction.

(1) Narayan et al., Retrofitting Fine Grain Isolation in the Firefox Renderer, USENIX Security 2020

(1)

(2) Amar et al., CHERIoT RTOS: An OS for Fine-Grained Memory-Safe Compartments on Low-Cost Embedded Devices, SOSP 2025

Leveraging C++ types to
ensure all interface-

crossing data is checked

Do as many of these checks
as possible automatically

(2)

Using capabilities to exchange
data temporarily and with

reduced permissions

Opaque data types eliminate the
need for checks on exported-and-
reimported objects

Some do!

143

Open Problem in Compartmentalization
Abstractions

Some do!

Most abstractions consider the hardening of
compartment interfaces an orthogonal problem.

More work needed in that direction.

(1) Narayan et al., Retrofitting Fine Grain Isolation in the Firefox Renderer, USENIX Security 2020

(1)

(2) Amar et al., CHERIoT RTOS: An OS for Fine-Grained Memory-Safe Compartments on Low-Cost Embedded Devices, SOSP 2025

Leveraging C++ types to
ensure all interface-

crossing data is checked

Do as many of these checks
as possible automatically

(2)

Using capabilities to exchange
data temporarily and with

reduced permissions

Opaque data types eliminate the
need for checks on exported-and-
reimported objects

144

Open Problem in Compartmentalization
Abstractions

Some do!

Most abstractions consider the hardening of
compartment interfaces an orthogonal problem.

More work needed in that direction.

(1) Narayan et al., Retrofitting Fine Grain Isolation in the Firefox Renderer, USENIX Security 2020

(1)

(2) Amar et al., CHERIoT RTOS: An OS for Fine-Grained Memory-Safe Compartments on Low-Cost Embedded Devices, SOSP 2025

Leveraging C++ types to
ensure all interface-

crossing data is checked

Do as many of these checks
as possible automatically

(2)

Using capabilities to exchange
data temporarily and with

reduced permissions

Opaque data types eliminate the
need for checks on exported-and-
reimported objects

145

Open Problem in Compartmentalization
Abstractions

Some do!

Most abstractions consider the hardening of
compartment interfaces an orthogonal problem.

More work needed in that direction.

(1) Narayan et al., Retrofitting Fine Grain Isolation in the Firefox Renderer, USENIX Security 2020

(1)

(2) Amar et al., CHERIoT RTOS: An OS for Fine-Grained Memory-Safe Compartments on Low-Cost Embedded Devices, SOSP 2025

Leveraging C++ types to
ensure all interface-

crossing data is checked

Do as many of these checks
as possible automatically

(2)

Using capabilities to exchange
data temporarily and with

reduced permissions

Opaque data types eliminate the
need for checks on exported-and-
reimported objects

Bigger Picture of Compartmentalization

146

1. How to determine the right policy to enforce?
o Done with a policy definition method

2. How to integrate the notion of compartmentalization
policies in software / programming models / idioms?
o Done with a compartmentalization abstraction

3. How to enforce policies at runtime?
o Done with a compartmentalization mechanism

Propose to view compartmentalization as 3 problems:

How to enforce policies?

147

Problem #3

Finally, we must enforce the policy at runtime.
This is achieved with an enforcement mechanism.

Finally, we must enforce the policy at runtime.
This is achieved with an enforcement mechanism.

Page tables (via the MMU) are the historical enforcement mechanism.
Example from earlier: assume we implemented the sandbox with processes.

How to enforce policies?

148

Problem #3

How to enforce policies?

149

HTTP
Parser

(Fictive monolithic program)

FastCGI
Module

SSL
Library

...

Problem #3

Finally, we must enforce the policy at runtime.
This is achieved with an enforcement mechanism.

Page tables (via the MMU) are the historical enforcement mechanism.
Example from earlier: assume we implemented the sandbox with processes.

How to enforce policies?

150

HTTP
Parser

(Fictive monolithic program)

FastCGI
Module

SSL
Library

...

Address space (page table) 1

Address space (page table) 2

Problem #3

Finally, we must enforce the policy at runtime.
This is achieved with an enforcement mechanism.

Page tables (via the MMU) are the historical enforcement mechanism.
Example from earlier: assume we implemented the sandbox with processes.

How to enforce policies?

151

HTTP
Parser

(Fictive monolithic program)

FastCGI
Module

SSL
Library

...

Address space (page table) 1

Address space (page table) 2

The memory management
unit enforces isolation

Problem #3

Finally, we must enforce the policy at runtime.
This is achieved with an enforcement mechanism.

Page tables (via the MMU) are the historical enforcement mechanism.
Example from earlier: assume we implemented the sandbox with processes.

How to enforce policies?

152

Finally, we must enforce the policy at runtime.
This is achieved with an enforcement mechanism.

HTTP
Parser

(Fictive monolithic program)

FastCGI
Module

SSL
Library

...

Address space (page table) 1

Address space (page table) 2

The memory management
unit enforces isolation

Page tables (via the MMU) are the historical enforcement mechanism.
Example from earlier: assume we implemented the sandbox with processes.

This is still the most common way to do it today.

Problem #3

153

Enforcement mechanisms (for compartmentalization)
are also a hot area:

Enforcement Mechanisms

Enable for stronger security properties

Maximize performance

Minimize hardware cost and complexity

(1) Lefeuvre et al., SoK: Software
Compartmentalization, S&P 2025

(1)

154

Enforcement Mechanisms

(1) Lefeuvre et al., SoK: Software
Compartmentalization, S&P 2025

(1)

Enforcement mechanisms (for compartmentalization)
are also a hot area:

Enable for stronger security properties

Maximize performance

Minimize hardware cost and complexity

155

156

Names of the mechanisms we consider Characteristics we included in the taxonomy

157

Names of the mechanisms we consider Characteristics we included in the taxonomy

158

Again, a few interesting aspects

159

WebAssembly

CHERI

Intel
MPK

Hardware and software are both popular research areas

160

A lot of interest in enforcing memory isolation at a byte granularity (vs. a page)

Very widely varying – 128 bits!

161

Nearly all works aim at cutting the cost of domain switches

162

Pick one influential example from the literature: CHERI

(1) Watson et al., CHERI: A Hybrid Capability-System Architecture for Scalable Software Compartmentalization, S&P 2015

(1)(2)

(2) Amar et al., CHERIoT RTOS: An OS for Fine-Grained Memory-Safe Compartments on Low-Cost Embedded Devices, SOSP 2025

163

Pick one influential example from the literature: CHERI

(1) Watson et al., CHERI: A Hybrid Capability-System Architecture for Scalable Software Compartmentalization, S&P 2015

(1)(2)

Hardware mechanism that
comes as an ISA extension

(2) Amar et al., CHERIoT RTOS: An OS for Fine-Grained Memory-Safe Compartments on Low-Cost Embedded Devices, SOSP 2025

164

Pick one influential example from the literature: CHERI

(1) Watson et al., CHERI: A Hybrid Capability-System Architecture for Scalable Software Compartmentalization, S&P 2015

(1)(2)

Hardware mechanism that
comes as an ISA extension

CHERI extends pointers with
bounds and permission

information. It is very expressive!

(2) Amar et al., CHERIoT RTOS: An OS for Fine-Grained Memory-Safe Compartments on Low-Cost Embedded Devices, SOSP 2025

165

Pick one influential example from the literature: CHERI

(1) Watson et al., CHERI: A Hybrid Capability-System Architecture for Scalable Software Compartmentalization, S&P 2015

(1)(2)

Hardware mechanism that
comes as an ISA extension

It can be used to enforce
isolation at a byte granularity,
as opposed to entire pages

CHERI extends pointers with
bounds and permission

information. It is very expressive!

(2) Amar et al., CHERIoT RTOS: An OS for Fine-Grained Memory-Safe Compartments on Low-Cost Embedded Devices, SOSP 2025

166

Pick one influential example from the literature: CHERI

(1) Watson et al., CHERI: A Hybrid Capability-System Architecture for Scalable Software Compartmentalization, S&P 2015

(1)(2)

Hardware mechanism that
comes as an ISA extension

It can be used to enforce
isolation at a byte granularity,
as opposed to entire pages

It comes with a very low
domain-switching overhead.

CHERI extends pointers with
bounds and permission

information. It is very expressive!

(2) Amar et al., CHERIoT RTOS: An OS for Fine-Grained Memory-Safe Compartments on Low-Cost Embedded Devices, SOSP 2025

167

Open Problem in Enforcement Mechanisms
Mechanisms must fulfill several properties to be suitable to enforce
compartmentalization (we formalize them in the SoK)

How to fairly evaluate the security and performance
characteristics of isolation mechanisms?

Some (popular!) mechanisms do not fulfill all these properties

168

Open Problem in Enforcement Mechanisms
Mechanisms must fulfill several properties to be suitable to enforce
compartmentalization (we formalize them in the SoK)

How to fairly evaluate the security and performance
characteristics of isolation mechanisms?

Some (popular!) mechanisms do not fulfill all these properties

169

Open Problem in Enforcement Mechanisms
Mechanisms must fulfill several properties to be suitable to enforce
compartmentalization (we formalize them in the SoK)

How to fairly evaluate the security and performance
characteristics of isolation mechanisms?

Intel
MPK

Some (popular!) mechanisms do not fulfill all these properties

170

Open Problem in Enforcement Mechanisms
Mechanisms must fulfill several properties to be suitable to enforce
compartmentalization (we formalize them in the SoK)

How to fairly evaluate the security and performance
characteristics of isolation mechanisms?

Intel
MPK

Access permissions are stored
in an unprotected register

Some (popular!) mechanisms do not fulfill all these properties

171

Open Problem in Enforcement Mechanisms
Mechanisms must fulfill several properties to be suitable to enforce
compartmentalization (we formalize them in the SoK)

How to fairly evaluate the security and performance
characteristics of isolation mechanisms?

Intel
MPK

Access permissions are stored
in an unprotected register

Instructions that can modify this
register must be protected, but this
comes at a cost and is often neglected

Skews performance and
security comparisons

Some (popular!) mechanisms do not fulfill all these properties

172

Open Problem in Enforcement Mechanisms
Mechanisms must fulfill several properties to be suitable to enforce
compartmentalization (we formalize them in the SoK)

How to fairly evaluate the security and performance
characteristics of isolation mechanisms?

Intel
MPK

Access permissions are stored
in an unprotected register

Instructions that can modify this
register must be protected, but this
comes at a cost and is often neglected

Skews performance and
security comparisons

Some (popular!) mechanisms do not fulfill all these properties

My promise for this talk

1. What is software compartmentalization? (slightly more formal)
2. A systematic perspective on compartmentalization
3. The why: compartmentalization everywhere, what will it take?

A journey through twenty years of
compartmentalization

What are the remaining obstacles? Where to go from there?

Potential obstacle #1: Lack of awareness?

174

(1) Lefeuvre et al., SoK: Software Compartmentalization, S&P 2025

Potential obstacle #1: Lack of awareness?

175

"Out of the 13 groups of compartmentalized
applications we constituted, 8 are exclusively

authored by academics or security professionals"

(1)

(1) Lefeuvre et al., SoK: Software Compartmentalization, S&P 2025

Potential obstacle #1: Lack of awareness?

176

We barely teach it at the university, not
part of common "software design patterns"

"Out of the 13 groups of compartmentalized
applications we constituted, 8 are exclusively

authored by academics or security professionals"

(1)

We barely teach it at the university, not
part of common "software design patterns"

(1) Lefeuvre et al., SoK: Software Compartmentalization, S&P 2025

(1)

Yes, but...

"Out of the 13 groups of compartmentalized
applications we constituted, 8 are exclusively

authored by academics or security professionals"

Potential obstacle #1: Lack of awareness?

177

Potential obstacle #2: Performance?

178

HTTP
Parser

FastCGI
Module

fastcgi_do()

Critical stance: in most cases, this is not a problem.
• The community is overly focused on performance
• The cost is reasonable in most cases if the

compartmentalization is done correctly
• In fact, many performance-sensitive programs are

compartmentalized!

Compartmentalization has an impact on performance
• Crossing protection domains or IPC is not free (among others)
• This cost varies based on where crossings are in the control flow
This makes compartmentalization more complex and limits the
extent to which one can compartmentalize

Potential obstacle #2: Performance?

Remember our policy
definition challenge...

179

HTTP
Parser

FastCGI
Module

fastcgi_do()

Critical stance: in most cases, this is not a problem.
• The community is overly focused on performance
• The cost is reasonable in most cases if the

compartmentalization is done correctly
• In fact, many performance-sensitive programs are

compartmentalized!

Compartmentalization has an impact on performance
• Crossing protection domains or IPC is not free (among others)
• This cost varies based on where crossings are in the control flow
This makes compartmentalization more complex and limits the
extent to which one can compartmentalize

Potential obstacle #2: Performance?

180

Remember our policy
definition challenge...

Potential obstacle #2: Performance?

181

HTTP
Parser

FastCGI
Module

fastcgi_do()

Remember our policy
definition challenge...

Critical stance: in most cases, this is not a problem.
• The community is overly focused on performance
• The cost is reasonable in most cases if the

compartmentalization is done correctly
• In fact, many performance-sensitive programs are

compartmentalized!

Compartmentalization has an impact on performance
• Crossing protection domains or IPC is not free (among others)
• This cost varies based on where crossings are in the control flow
This makes compartmentalization more complex and limits the
extent to which one can compartmentalize

Potential obstacle #2: Performance?

182

HTTP
Parser

FastCGI
Module

fastcgi_do()

Remember our policy
definition challenge...

Critical stance: in most cases, this is not a problem.
• The community is overly focused on performance
• The cost is reasonable in most cases if the

compartmentalization is done correctly
• In fact, many performance-sensitive programs are

compartmentalized!

Compartmentalization has an impact on performance
• Crossing protection domains or IPC is not free (among others)
• This cost varies based on where crossings are in the control flow
This makes compartmentalization more complex and limits the
extent to which one can compartmentalize

Potential obstacle #2: Performance?

183

HTTP
Parser

FastCGI
Module

fastcgi_do()

Remember our policy
definition challenge...

Critical stance: in most cases, this is not a problem.
• The community is overly focused on performance
• The cost is reasonable in most cases if the

compartmentalization is done correctly
• In fact, many performance-sensitive programs are

compartmentalized!

Compartmentalization has an impact on performance
• Crossing protection domains or IPC is not free (among others)
• This cost varies based on where crossings are in the control flow
This makes compartmentalization more complex and limits the
extent to which one can compartmentalize

Yes, but...

Potential obstacle #3: Complexity!

184

Determining boundaries

Potential obstacle #3: Complexity!

185

The historical approach to compartmentalizing software is too complex.

Implementing them with
low-level process APIs

Going back to our example:
Securing them with

ad-hoc audits

Potential obstacle #3: Complexity!

186

Implementing them with
low-level process APIs

Going back to our example:

The historical approach to compartmentalizing software is too complex.

Securing them with
ad-hoc auditsDetermining boundaries

Potential obstacle #3: Complexity!

187

Securing them with
ad-hoc audits

The historical approach to compartmentalizing software is too complex.

Implementing them with
low-level process APIs

Going back to our example:

Determining boundaries

Potential obstacle #3: Complexity!

188

Determining boundaries
Implementing them with

low-level process APIs
Securing them with

ad-hoc audits

This approach is ad-hoc, costly in developer time,
and requires a lot of expertise.

The historical approach to compartmentalizing software is too complex.

Going back to our example:

Potential obstacle #3: Complexity!

189

Implementing them with
low-level process APIs

Securing them with
ad-hoc audits

This approach is ad-hoc, costly in developer time,
and requires a lot of expertise.

The historical approach to compartmentalizing software is too complex.

Going back to our example:

Determining boundaries

Consider debugging:
• There will be bugs to fix.
• Bugs now occur across security boundaries.
• This impacts the debugging experience but

the debugging ecosystem is not there.

Potential obstacle #3: Complexity!

190

The historical approach to compartmentalizing software is too complex.

Worse yet, it considers compartmentalization
as a one-off operation, which it isn't.

HTTP
Parser

FastCGI
Module

SSL
Library

...

Consider debugging:
• There will be bugs to fix.
• Bugs now occur across security boundaries.
• This impacts the debugging experience but

the debugging ecosystem is not there.

Potential obstacle #3: Complexity!

191

The historical approach to compartmentalizing software is too complex.

Worse yet, it considers compartmentalization
as a one-off operation, which it isn't.

HTTP
Parser

FastCGI
Module

SSL
Library

...

Consider debugging:
• There will be bugs to fix.
• Bugs now occur across security boundaries.
• This impacts the debugging experience but

the debugging ecosystem is not there.

Potential obstacle #3: Complexity!

192

The historical approach to compartmentalizing software is too complex.

Worse yet, it considers compartmentalization
as a one-off operation, which it isn't.

Process

HTTP
Parser

Process

FastCGI
Module

Process

SSL
Library

Process

...

Consider debugging:
• There will be bugs to fix.
• Bugs now occur across security boundaries.
• This impacts the debugging experience but

the debugging ecosystem is not there.

Potential obstacle #3: Complexity!

193

The historical approach to compartmentalizing software is too complex.

Worse yet, it considers compartmentalization
as a one-off operation, which it isn't.

Process

HTTP
Parser

Process

FastCGI
Module

Process

SSL
Library

Process

...

Consider maintenance!
• Developers will need to maintain the

partitioned program.
• Over time, the partitioning strategy may

need to change.
• Again, there is historically no tooling to

handle that safely and avoid regressions.

Potential obstacle #3: Complexity!

194

HTTP
Parser

FastCGI
Module

SSL
Library

...

The historical approach to compartmentalizing software is too complex.

Worse yet, it considers compartmentalization
as a one-off operation, which it isn't.

Consider maintenance!
• Developers will need to maintain the

partitioned program.
• Over time, the partitioning strategy may

need to change.
• Again, there is historically no tooling to

handle that safely and avoid regressions.

Potential obstacle #3: Complexity!

195

HTTP
Parser

FastCGI
Module

SSL
Library

...

Session
Keys

Rest of
the SSL
Lib

The historical approach to compartmentalizing software is too complex.

Worse yet, it considers compartmentalization
as a one-off operation, which it isn't.

Consider maintenance!
• Developers will need to maintain the

partitioned program.
• Over time, the partitioning strategy may

need to change.
• Again, there is historically no tooling to

handle that safely and avoid regressions.

Potential obstacle #3: Complexity!

196

HTTP
Parser

FastCGI
Module

SSL
Library

...

Session
Keys

Rest of
the SSL
Lib

The historical approach to compartmentalizing software is too complex.

Worse yet, it considers compartmentalization
as a one-off operation, which it isn't.

197

Potential obstacle #4: The lack of a
systematic approach?

(1) https://www.cs.dartmouth.edu/~doug/components.txt

Potential obstacle #4: The lack of a
systematic approach?

198

The historical approach to compartmentalization does not scale:
• Historically, compartmentalization is deeply custom to each program
• Compartmentalize program A, then start all over again with B

Can we make compartmentalization efforts reusable?
• Can we compartmentalize component C, and reuse that

component compartmentalized everywhere?
• Analogy to the "software crisis" from the 1960s:

o The answer to "we are not producing enough software" is to
build software from reusable components(1)

The historical approach to compartmentalization does not scale:
• Historically, compartmentalization is deeply custom to each program
• Compartmentalize program A, then start all over again with B

(1) https://www.cs.dartmouth.edu/~doug/components.txt

Can we make compartmentalization efforts reusable?
• Can we compartmentalize component C, and reuse that

component compartmentalized everywhere?
• Analogy to the "software crisis" from the 1960s:

o The answer to "we are not producing enough software" is to
build software from reusable components(1)

199

Potential obstacle #4: The lack of a
systematic approach?

The historical approach to compartmentalization does not scale:
• Historically, compartmentalization is deeply custom to each program
• Compartmentalize program A, then start all over again with B

(1) https://www.cs.dartmouth.edu/~doug/components.txt

Can we make compartmentalization efforts reusable?
• Can we compartmentalize component C, and reuse that

component compartmentalized everywhere?
• Analogy to the "software crisis" from the 1960s:

o The answer to "we are not producing enough software" is to
build software from reusable components(1)

200

Potential obstacle #4: The lack of a
systematic approach?

A golden age

It is the right time to push
compartmentalization everywhere (1)

*emphasis mine

The level of cyber threat keeps on increasing (…).
Today, ANSSI assesses that attackers linked to
China, Russia and cybercrime pose the greatest
threat to the most critical networks and to the
French ecosystem in a systemic way.

(1) https://www.cert.ssi.gouv.fr/uploads/CERTFR-2024-CTI-002.pdf 202

• More than ever we need more secure software
• Compartmentalization absolutely fits the needs

• More than ever we need more secure software
• Compartmentalization absolutely fits the needs

(1)

(2)

(1) https://www.cert.ssi.gouv.fr/uploads/CERTFR-2024-CTI-002.pdf

It is the right time to push
compartmentalization everywhere

(2) https://www.cisa.gov/sites/default/files/2023-10/SecureByDesign_1025_508c.pdf

*emphasis mine

The level of cyber threat keeps on increasing (…).
Today, ANSSI assesses that attackers linked to
China, Russia and cybercrime pose the greatest
threat to the most critical networks and to the
French ecosystem in a systemic way.

Secure Hardware Foundation: Incorporate
architectural features that enable fine-
grained memory protection, such as those
described by Capability Hardware Enhanced
RISC Instructions (CHERI)

203

Co-signed by, among
others, UK, NL, DE, NO

(1)

It is the right time to push
compartmentalization everywhere

(1) Lefeuvre et al., SoK: Software Compartmentalization, S&P 2025 204

• The challenges to push compartmentalization at
scale are not new:
o Research has explored them in many ways

and come up with solutions that work
(second part of this talk!)

o These advances are just asking to be
developed and mainstreamed

• The challenges to push compartmentalization at
scale are not new:
o Research has explored them in many ways

and come up with solutions that work
(second part of this talk!)

o These advances are just asking to be
developed and mainstreamed

(1)

It is the right time to push
compartmentalization everywhere

(1) Lefeuvre et al., SoK: Software Compartmentalization, S&P 2025 205

• The challenges to push compartmentalization at
scale are not new:
o Research has explored them in many ways

and come up with solutions that work
(second part of this talk!)

o These advances are just asking to be
developed and mainstreamed

(1)

It is the right time to push
compartmentalization everywhere

(1) Lefeuvre et al., SoK: Software Compartmentalization, S&P 2025 206

Take RLBox, discussed earlier in the talk
• Productized in Firefox for library isolation
• You can use it: https://github.com/PLSysSec/rlbox

(1)

The missing frameworks are emerging

207

Recently: increasing interest in coming together to
create industry standards for compartmentalization
• The Open Robust Compartmentalization Alliance

was just accepted as Linux Foundation
project: https://github.com/ORCA-LF/governance

• Aiming to foster the adoption and standardization
of compartmentalization practices

(1) Narayan et al., Retrofitting Fine Grain Isolation
in the Firefox Render, USENIX Security 2020

https://github.com/PLSysSec/rlbox
https://github.com/ORCA-LF/governance
https://github.com/ORCA-LF/governance
https://github.com/ORCA-LF/governance

Take RLBox, discussed earlier in the talk
• Productized in Firefox for library isolation
• You can use it: https://github.com/PLSysSec/rlbox

(1)

The missing frameworks are emerging

208

Recently: increasing interest in coming together to
create industry standards for compartmentalization
• The Open Robust Compartmentalization Alliance

was just accepted as Linux Foundation
project: https://github.com/ORCA-LF/governance

• Aiming to foster the adoption and standardization
of compartmentalization practices

(1) Narayan et al., Retrofitting Fine Grain Isolation
in the Firefox Render, USENIX Security 2020

https://github.com/PLSysSec/rlbox
https://github.com/ORCA-LF/governance
https://github.com/ORCA-LF/governance
https://github.com/ORCA-LF/governance

(1) Narayan et al., Retrofitting Fine Grain Isolation
in the Firefox Render, USENIX Security 2020

(1)

The missing frameworks are emerging

209

Recently: increasing interest in coming together to
create industry standards for compartmentalization
• The Open Robust Compartmentalization Alliance

was just accepted as Linux Foundation
project: https://github.com/ORCA-LF/governance

• Aiming to foster the adoption and standardization
of compartmentalization practices

Take RLBox, discussed earlier in the talk
• Productized in Firefox for library isolation
• You can use it: https://github.com/PLSysSec/rlbox

Join us! Still in early stage, you
can send me a message.

https://github.com/ORCA-LF/governance
https://github.com/ORCA-LF/governance
https://github.com/ORCA-LF/governance
https://github.com/PLSysSec/rlbox

Take CHERI, discussed earlier as well.

The hardware ecosystem is emerging

210

ARM Morello Prototype
Board (2020)

Codasip X730 (2024)

It is not a research prototype. You can use it!

ICENI Family (CHERIoT): CHERI for
the embedded world (2025)

Recently: creation of the CHERI Alliance to support
industry standards and foster adoption
• Join the CHERI Alliance! https://cheri-alliance.org/

https://cheri-alliance.org/
https://cheri-alliance.org/
https://cheri-alliance.org/

The hardware ecosystem is emerging

211

It is not a research prototype. You can use it!

ICENI Family (CHERIoT): CHERI for
the embedded world (2025)

ARM Morello Prototype
Board (2020)

Codasip X730 (2024)

Take CHERI, discussed earlier as well.

Recently: creation of the CHERI Alliance to support
industry standards and foster adoption
• Join the CHERI Alliance! https://cheri-alliance.org/

https://cheri-alliance.org/
https://cheri-alliance.org/
https://cheri-alliance.org/

The hardware ecosystem is emerging

212

Recently: creation of the CHERI Alliance to support
industry standards and foster adoption
• Join the CHERI Alliance! https://cheri-alliance.org/

ARM Morello Prototype
Board (2020)

Codasip X730 (2024)

It is not a research prototype. You can use it!

ICENI Family (CHERIoT): CHERI for
the embedded world (2025)

Take CHERI, discussed earlier as well.

https://cheri-alliance.org/
https://cheri-alliance.org/
https://cheri-alliance.org/

Software compartmentalization
everywhere: what will it take?

Yes, there are many interesting research challenges left.

But for the better part, it is about transitioning two decades of
research into the industry and open-source communities

1. An effort on industry-grade compartmentalization frameworks
to lower the bar to compartmentalize software

2. An effort on using these frameworks to compartmentalize
vulnerable components in a re-usable fashion: can we do this
under the umbrella of Linux distributions?

3. Supporting the push towards emerging security-oriented
hardware: integrate CHERI in your hardware products!

214

Yes, there are many interesting research challenges left.

But for the better part, it is about transitioning two decades of
research into the industry and open-source communities

1. An effort on industry-grade compartmentalization frameworks
to lower the bar to compartmentalize software

2. An effort on using these frameworks to compartmentalize
vulnerable components in a re-usable fashion: can we do this
under the umbrella of Linux distributions?

3. Supporting the push towards emerging security-oriented
hardware: integrate CHERI in your hardware products!

215

Yes, there are many interesting research challenges left.

But for the better part, it is about transitioning two decades of
research into the industry and open-source communities

1. An effort on industry-grade compartmentalization frameworks
to lower the bar to compartmentalize software

2. An effort on using these frameworks to compartmentalize
vulnerable components in a re-usable fashion: can we do this
under the umbrella of Linux distributions?

3. Supporting the push towards emerging security-oriented
hardware: integrate CHERI in your hardware products!

216

Yes, there are many interesting research challenges left.

But for the better part, it is about transitioning two decades of
research into the industry and open-source communities

1. An effort on industry-grade compartmentalization frameworks
to lower the bar to compartmentalize software

2. An effort on using these frameworks to compartmentalize
vulnerable components in a re-usable fashion: can we do this
under the umbrella of Linux distributions?

3. Supporting the push towards emerging security-oriented
hardware: integrate CHERI in your hardware products!

217

218

Yes, there are many interesting research challenges left.

But for the better part, it is about transitioning two decades of
research into the industry and open-source communities

1. An effort on industry-grade compartmentalization frameworks
to lower the bar to compartmentalize software

2. An effort on using these frameworks to compartmentalize
vulnerable components in a re-usable fashion: can we do this
under the umbrella of Linux distributions?

3. Supporting the push towards emerging security-oriented
hardware: integrate CHERI in your hardware products!

Key Takeaways

1. Compartmentalization is a key practice to improve the
trustworthiness of software

2. Compartmentalization, in its historical form, is hindered by its
complexity

3. We live at a golden age to solve this problem. A call to the
community: we can make software more trustworthy!

Key Takeaways

1. Compartmentalization is a key practice to improve the
trustworthiness of software

2. Compartmentalization, in its historical form, is hindered by its
complexity

3. We live at a golden age to solve this problem. A call to the
community: we can make software more trustworthy!

Key Takeaways

1. Compartmentalization is a key practice to improve the
trustworthiness of software

2. Compartmentalization, in its historical form, is hindered by its
complexity

3. We live at a golden age to solve this problem. A call to the
community: we can make software more trustworthy!

Key Takeaways

1. Compartmentalization is a key practice to improve the
trustworthiness of software

2. Compartmentalization, in its historical form, is hindered by its
complexity

3. We live at a golden age to solve this problem. A call to the
community: we can make software more trustworthy!

Key Takeaways

1. Compartmentalization is a key practice to improve the
trustworthiness of software

2. Compartmentalization, in its historical form, is hindered by its
complexity

3. We live at a golden age to solve this problem. A call to the
community: we can make software more trustworthy!

Reach out: hugo.lefeuvre@ubc.ca

Sponsors:
Collaborators:

Questions?

mailto:hugo.lefeuvre@ubc.ca

	Slide 1: Software Compartmentalization Everywhere - What Will it Take?
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Systematizing Compartmentalization
	Slide 33: Systematizing Compartmentalization
	Slide 34: Systematizing Compartmentalization
	Slide 35: Systematizing Compartmentalization
	Slide 36: My promise for this talk
	Slide 37: My promise for this talk
	Slide 38: What is Software Compartmentalization?
	Slide 39: What is Software Compartmentalization?
	Slide 40: What is Software Compartmentalization?
	Slide 41: What is Software Compartmentalization?
	Slide 42: What is Software Compartmentalization?
	Slide 43: What is Software Compartmentalization?
	Slide 44: What is Software Compartmentalization?
	Slide 45: What is Software Compartmentalization?
	Slide 46: What is Software Compartmentalization?
	Slide 47: What is Software Compartmentalization?
	Slide 48: What is Software Compartmentalization?
	Slide 49: What is Software Compartmentalization?
	Slide 50: What is Software Compartmentalization?
	Slide 51: What is Software Compartmentalization?
	Slide 52: What is Software Compartmentalization?
	Slide 53: What is Software Compartmentalization?
	Slide 54: What is Software Compartmentalization?
	Slide 55: What is Software Compartmentalization?
	Slide 56: What is Software Compartmentalization?
	Slide 57: What is Software Compartmentalization?
	Slide 58: What is Software Compartmentalization?
	Slide 59: What is Software Compartmentalization?
	Slide 60: What is Software Compartmentalization?
	Slide 61: What is Software Compartmentalization?
	Slide 62: What is Software Compartmentalization?
	Slide 63: What is Software Compartmentalization?
	Slide 64: What is Software Compartmentalization?
	Slide 65: What is Software Compartmentalization?
	Slide 66: What is Software Compartmentalization?
	Slide 67: What is Software Compartmentalization?
	Slide 68: What is Software Compartmentalization?
	Slide 69: What is Software Compartmentalization?
	Slide 70: My promise for this talk
	Slide 71: Bigger Picture of Compartmentalization
	Slide 72: Bigger Picture of Compartmentalization
	Slide 73: Bigger Picture of Compartmentalization
	Slide 74: Bigger Picture of Compartmentalization
	Slide 75: Bigger Picture of Compartmentalization
	Slide 76: How to determine the right policy to enforce?
	Slide 77: How to determine the right policy to enforce?
	Slide 78: How to determine the right policy to enforce?
	Slide 79: Policy Definition Methods
	Slide 80: Policy Definition Methods
	Slide 81: Policy Definition Methods
	Slide 82: Policy Definition Methods
	Slide 83: Policy Definition Methods
	Slide 84: Policy Definition Methods
	Slide 85: Policy Definition Methods
	Slide 86: Systematizing Policy Definition Methods
	Slide 87: Systematizing Policy Definition Methods
	Slide 88: Systematizing Policy Definition Methods
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101: Open Problem in Policy Definition Methods
	Slide 102: Open Problem in Policy Definition Methods
	Slide 103: Open Problem in Policy Definition Methods
	Slide 104: Open Problem in Policy Definition Methods
	Slide 105: Open Problem in Policy Definition Methods
	Slide 106: Open Problem in Policy Definition Methods
	Slide 107: Open Problem in Policy Definition Methods
	Slide 108: Bigger Picture of Compartmentalization
	Slide 109: How to implement policies?
	Slide 110: How to implement policies?
	Slide 111: How to implement policies?
	Slide 112: How to implement policies?
	Slide 113: How to implement policies?
	Slide 114: How to implement policies?
	Slide 115: How to implement policies?
	Slide 116: How to implement policies?
	Slide 117: How to implement policies?
	Slide 118: Compartmentalization Abstractions
	Slide 119: Compartmentalization Abstractions
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134: Open Problem in Compartmentalization Abstractions
	Slide 135: Open Problem in Compartmentalization Abstractions
	Slide 136: Open Problem in Compartmentalization Abstractions
	Slide 137: Open Problem in Compartmentalization Abstractions
	Slide 138: Open Problem in Compartmentalization Abstractions
	Slide 139: Open Problem in Compartmentalization Abstractions
	Slide 140: Open Problem in Compartmentalization Abstractions
	Slide 141: Open Problem in Compartmentalization Abstractions
	Slide 142: Open Problem in Compartmentalization Abstractions
	Slide 143: Open Problem in Compartmentalization Abstractions
	Slide 144: Open Problem in Compartmentalization Abstractions
	Slide 145: Open Problem in Compartmentalization Abstractions
	Slide 146: Bigger Picture of Compartmentalization
	Slide 147: How to enforce policies?
	Slide 148: How to enforce policies?
	Slide 149: How to enforce policies?
	Slide 150: How to enforce policies?
	Slide 151: How to enforce policies?
	Slide 152: How to enforce policies?
	Slide 153: Enforcement Mechanisms
	Slide 154: Enforcement Mechanisms
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167: Open Problem in Enforcement Mechanisms
	Slide 168: Open Problem in Enforcement Mechanisms
	Slide 169: Open Problem in Enforcement Mechanisms
	Slide 170: Open Problem in Enforcement Mechanisms
	Slide 171: Open Problem in Enforcement Mechanisms
	Slide 172: Open Problem in Enforcement Mechanisms
	Slide 173: My promise for this talk
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223

