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Attacks on micro-architecture

• hardware usually modeled as an abstract layer behaving correctly

, but
possible attacks

• faults: bypassing software protections by causing hardware errors
• side channels: observing side effects of hardware on computations
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Fig. 7. On top is one trace’s raw measurement over 4 000 000 cycles. The peaks in the resampled trace on the bottom clearly indicate ‘1’s.

TABLE II
BIT-WISE KEY RECOVERY OVER FIVE PARTIAL KEYS.

No. Recovered key
1 10111110001100110010111101010000100...
2 10111011000111001100101101101010000...
3 10111110001110011001011110101000010...
4 10111110001110001100101111010100001...
5 10111110001110011001011100010100001...

correct the current bit of the wrong partial key, we compute the
edit distance to all partial keys that won the majority vote. To
reduce performance overhead, we calculate the edit distance,
not over the whole partial keys but only over a lookahead
window of a few bits. The output of the edit distance algorithm
is a list of actions necessary to transform one key into the
other. We apply these actions via majority vote until the key bit
of the wrong partial key matches the recovered key bit again.
Table II gives an example where the topmost 5 bits are already
recovered (underlined). The sixth key bit is recovered as ‘1’,
since all partial key bits—except for the second one—are ‘1’
(bold). The incorrect ‘0’ of the second partial key is deleted
before proceeding to the next bit. This procedure is repeated
for all key bits until the majority of partial keys reached the
last bit.

VI. EVALUATION

In this section, we evaluate the presented methods by
building a malware enclave attacking a co-located enclave
that acts as the victim. As discussed in Section III-B, we
use mbedTLS, in version 2.3.0. The small code and memory
footprint and self-containment of mbedTLS makes it easy to
use in SGX enclaves.

A. RSA Key Sizes and Exploitation

For the evaluation, we attack a 4096-bit RSA key as this
provides long-term security, based on the recommendation of
NIST [61]. Higher bit sizes are rarely used outside tinfoil-hat
environments.

Table III shows various RSA key sizes and the correspond-
ing buffer sizes in mbedTLS. The runtime of the multiplication
function increases exponentially with the size of the key.

Cache Set Detection (3min)

Prime+Probe (5 s)

Pre-Processing (110 s)

Key Recovery (20 s)

Fig. 8. A high-level overview of the average times for each step of the attack.
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Fig. 9. The 9 cache sets that are used by a 4096b key and their error rate
when recovering the key from a single trace.

Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]–[64].

B. Native Environment

We use a Lenovo ThinkPad T460s running Ubuntu 16.10.
This computer supports SGX1 using Intel’s SGX driver. The
hardware details for the evaluation are shown in Table IV.
Both the attacker enclave and the victim enclave are running
on the same machine. We trigger the signature process using
the public API of the victim’s enclave.

Figure 8 gives an overview of how long the individual steps
of an average attack take. The runtime of automatic cache
set detection varies depending on which cache sets are used
by the victim. The attacked buffer spans 9 cache sets, out of
which 6 show low bit-error rate, as shown in Figure 9. For

• retrieving secret keys, keystroke
timings

• bypassing OS security (ASLR)



2

Attacks on micro-architecture

• hardware usually modeled as an abstract layer behaving correctly, but
possible attacks

• faults: bypassing software protections by causing hardware errors
• side channels: observing side effects of hardware on computations

identification attack

100 200 300 400

101

104

107

Access time [CPU cycles]

Nu
m
be

ro
fa

cc
es
se

s

cache hits cache misses

→
1 1 1 00 1 1 1 0 1 1 1 0000000 1 000 1 0 1 00 1 1 00 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 000 1 00 1 1 1 0 1 000 1 1 1 0000 1 1 1

Fig. 7. On top is one trace’s raw measurement over 4 000 000 cycles. The peaks in the resampled trace on the bottom clearly indicate ‘1’s.

TABLE II
BIT-WISE KEY RECOVERY OVER FIVE PARTIAL KEYS.

No. Recovered key
1 10111110001100110010111101010000100...
2 10111011000111001100101101101010000...
3 10111110001110011001011110101000010...
4 10111110001110001100101111010100001...
5 10111110001110011001011100010100001...

correct the current bit of the wrong partial key, we compute the
edit distance to all partial keys that won the majority vote. To
reduce performance overhead, we calculate the edit distance,
not over the whole partial keys but only over a lookahead
window of a few bits. The output of the edit distance algorithm
is a list of actions necessary to transform one key into the
other. We apply these actions via majority vote until the key bit
of the wrong partial key matches the recovered key bit again.
Table II gives an example where the topmost 5 bits are already
recovered (underlined). The sixth key bit is recovered as ‘1’,
since all partial key bits—except for the second one—are ‘1’
(bold). The incorrect ‘0’ of the second partial key is deleted
before proceeding to the next bit. This procedure is repeated
for all key bits until the majority of partial keys reached the
last bit.

VI. EVALUATION

In this section, we evaluate the presented methods by
building a malware enclave attacking a co-located enclave
that acts as the victim. As discussed in Section III-B, we
use mbedTLS, in version 2.3.0. The small code and memory
footprint and self-containment of mbedTLS makes it easy to
use in SGX enclaves.

A. RSA Key Sizes and Exploitation

For the evaluation, we attack a 4096-bit RSA key as this
provides long-term security, based on the recommendation of
NIST [61]. Higher bit sizes are rarely used outside tinfoil-hat
environments.

Table III shows various RSA key sizes and the correspond-
ing buffer sizes in mbedTLS. The runtime of the multiplication
function increases exponentially with the size of the key.

Cache Set Detection (3min)

Prime+Probe (5 s)

Pre-Processing (110 s)

Key Recovery (20 s)

Fig. 8. A high-level overview of the average times for each step of the attack.

1 2 3 4 5 6 7 8 9
0

10

20

30

40
33.68

29.87 29.83

6.96

4.19 3.75
6.1 5.36

4.29

B
it-

er
ro

r
ra

tio
[%

]

Fig. 9. The 9 cache sets that are used by a 4096b key and their error rate
when recovering the key from a single trace.

Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]–[64].

B. Native Environment

We use a Lenovo ThinkPad T460s running Ubuntu 16.10.
This computer supports SGX1 using Intel’s SGX driver. The
hardware details for the evaluation are shown in Table IV.
Both the attacker enclave and the victim enclave are running
on the same machine. We trigger the signature process using
the public API of the victim’s enclave.

Figure 8 gives an overview of how long the individual steps
of an average attack take. The runtime of automatic cache
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Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]–[64].

B. Native Environment

We use a Lenovo ThinkPad T460s running Ubuntu 16.10.
This computer supports SGX1 using Intel’s SGX driver. The
hardware details for the evaluation are shown in Table IV.
Both the attacker enclave and the victim enclave are running
on the same machine. We trigger the signature process using
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Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
keys do not provide higher security but degrade side-channel
resistance [23], [62]–[64].

B. Native Environment

We use a Lenovo ThinkPad T460s running Ubuntu 16.10.
This computer supports SGX1 using Intel’s SGX driver. The
hardware details for the evaluation are shown in Table IV.
Both the attacker enclave and the victim enclave are running
on the same machine. We trigger the signature process using
the public API of the victim’s enclave.

Figure 8 gives an overview of how long the individual steps
of an average attack take. The runtime of automatic cache
set detection varies depending on which cache sets are used
by the victim. The attacked buffer spans 9 cache sets, out of
which 6 show low bit-error rate, as shown in Figure 9. For
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Hence, larger keys improve the measurement resolution of the
attacker. In terms of cache side-channel attacks, large RSA
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Attacker model

Hardware-based attacks
a.k.a physical attacks

Software-based attacks
a.k.a micro-architectural attacks

vs

Physical access to hardware
→ embedded devices

Co-located or remote attacker
→ complex systems
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Micro-architectural side-channel attacks: Two faces of the same coin

Hardware Implementation

&



5

Outline

• Part 1 Small example: Flush+Reload on GnuPG v 1.4.13
• Part 2 Constant-time: The Struggle
• Part 3 Constant-time: The Betrayal



Part 1 Small example:
Flush+Reload on GnuPG v 1.4.13
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GnuPG 1.4.13 RSA square-and-multiply exponentiation

GnuPG version 1.4.13 (2013)

Algorithm 1: GnuPG 1.4.13 Square-and-multiply exponentiation
Input: base c, exponent d, modulus n
Output: cd mod n
X← 1
for i← bitlen(d) downto 0 do

X← square(X)
X← X mod n
if di = 1 then

X←multiply(X,c)
X← X mod n

end
end
return X
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Attacking GnuPG 1.4.13 RSA exponentiation

• monitor the square and multiply functions with Flush+Reload
to recover the bits of the secret exponent

Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.
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Attacking GnuPG 1.4.13 RSA exponentiation

• monitor the square and multiply functions with Flush+Reload
to recover the bits of the secret exponent

Y. Yarom and K. Falkner. “Flush+Reload: a High Resolution, Low Noise, L3 Cache Side-Channel Attack”. In: USENIX Security Symposium. 2014.
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Summary of the attack

secret value!
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What just happened?

cache attack
exploits timing differences 
of memory accesses 

attacker monitors
lines accessed by the
victim, not the content



Part 2 Constant-time: The Struggle
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Research Question: Which software implementation is vulnerable?

State of the art (more or less)
1. spend too much time reading OpenSSL code
2. find vulnerability
3. exploit it manually using known side channel
→ e.g. CPU cache

4. publish
5. goto step 1
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Side-channel vulnerabilities and constant-time programming

Problem?

Solution!

Side-channel vulnerability
Any branch or memory access
that depends on a secret

→
Constant-time programming
No branch or memory access
depends on a secret!

That’s easy, right?… right?



11

Side-channel vulnerabilities and constant-time programming

Problem? Solution!

Side-channel vulnerability
Any branch or memory access
that depends on a secret

→
Constant-time programming
No branch or memory access
depends on a secret!

That’s easy, right?… right?



11

Side-channel vulnerabilities and constant-time programming

Problem? Solution!

Side-channel vulnerability
Any branch or memory access
that depends on a secret

→
Constant-time programming
No branch or memory access
depends on a secret!

That’s easy, right?

… right?



11

Side-channel vulnerabilities and constant-time programming

Problem? Solution!

Side-channel vulnerability
Any branch or memory access
that depends on a secret

→
Constant-time programming
No branch or memory access
depends on a secret!

That’s easy, right?… right?



12

So many attacks...

+ CVE-2005-0109, CVE-2013-4242, CVE-2014-0076,
CVE-2016-0702, CVE-2016-2178, CVE-2016-7440,
CVE-2016-7439, CVE-2016-7438, CVE-2018-0495,
CVE-2018-0737, CVE-2018-10846, CVE-2019-9495,
CVE-2019-13627, CVE-2019-13628, CVE-2019-13629,
CVE-2020-16150, CVE-2020-36421, CVE-2023-5388,
CVE-2023-6135, CVE-2024-37880 …

So. Many. Attacks.
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So many detection frameworks, yet so many attacks... Why?

Year
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Related Work

• do developers use CT tools? [S&P 2022]
→ most developers do not use them, or
do not know about them

• how to improve the tool usability?
[USENIX Sec 2024]
→ most developers find them really
hard to use

J. Jancar et al. “”They’re not that hard to mitigate”: What Cryptographic Library Developers Think About Timing Attacks”. In: S&P. 2022.
M. Fourné et al. ““These results must be false”: A usability evaluation of constant-time analysis tools”. In: USENIX Security Symposium. 2024.
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Would the tools actually work to automatically
find recent vulnerabilities?
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Comparing recent vulnerabilities (2017-2022) with past vulnerabilities

1996 2005 2007 20142011 2017 2019 2021
square-and-multiply

RSA decryption

sliding window
RSA decryption

T-tables
AES encryption

binary GCD
RSA decryption

Montgomery ladder
(timing)

ECDSA signing

Montgomery ladder
(cache)

ECDSA signing

wNAF mult.
ECDSA signing

bignum arithmetic Hash-to-element 
function

binary GCD
RSA keygen

ECDSA signing
SM2 signing

wNAF mult.
SM2 signing

sliding window
RSA keygen

sliding window
SRP protocol

T-tables
PRG

Gaussian sampling

wNAF mult.
key handling
binary GCD
key handling
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The SAME vulnerabilities keep resurfacing. Why? (1/2)

New contexts:

• Key generation [AsiaCCS 2018]

• Key parsing and handling [USENIX Sec 2020, S&P 2019]

• Random number generation [S&P 2020]

(Mostly OpenSSL) Vulnerable code stays in the library
and the CT flag is not correctly set
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The SAME vulnerabilities keep resurfacing. Why? (2/2)

New libraries

• MbedTLS sliding window RSA implementation [DIMVA 2017]

• Bleichenbacher-like attacks in MbedTLS, s2n, or NSS [S&P 2019]

Vulnerability is found in OpenSSL but
patches are not propagated to other libraries
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Most vulnerabilities stem from code
already known to be vulnerable
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Side-channel vulnerability detection tools (1/2)
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Side-channel vulnerability detection tools (2/2)

Frameworks

Dynamic
Single trace 4 tools

Trace comparison 11 tools

Static
Symbolic execution 7 tools

Type system 2 tools

Abstract int. 5 tools

Logical reduction 5 tools
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Benchmark: cryptographic operations

Unified benchmark representative of cryptographic operations:

• 5 tools: Binsec/Rel, Abacus, ctgrind, dudect, Microwalk-CI
• 25 benchmarks from 3 libraries (OpenSSL, MbedTLS, BearSSL)
• cryptographic primitives: symmetric, AEAD schemes, asymmetric

L. Daniel, S. Bardin, and T. Rezk. “Binsec/Rel: Efficient Relational Symbolic Execution for Constant-Time at Binary-Level”. In: S&P. 2020.
Q. Bao et al. “Abacus: Precise Side-Channel Analysis”. In: ICSE. 2021.
https://github.com/agl/ctgrind
O. Reparaz, J. Balasch, and I. Verbauwhede. “Dude, is my code constant time?” In: DATE. 2017.
J. Wichelmann et al. “Microwalk-CI: Practical Side-Channel Analysis for JavaScript Applications”. In: CCS. 2022.
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Benchmark results: cryptographic operations (selection)

Binsec/Rel2 Abacus ctgrind Microwalk
#V #V #V #V

AES-CBC-bearssl (T) 36 36 36 36
AES-CBC-bearssl (BS) 0 0 0 0
AES-GCM-openssl (EVP) 0 0 70 8
RSA-bearssl (OAEP) 2 ( ) 87 0
RSA-openssl (PKCS) 1 ( ) 0 321 46
RSA-openssl (OAEP) 1 ( ) 546 61

• timeout limit ( ): 1 hour
• tools generally agree on symmetric crypto, but disagree on asymmetric crypto
• takeaway: support for vector instructions is essential
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Benchmark: recent vulnerabilities

Replication of published vulnerabilities:

• 7 vulnerable functions from 3 publications
• both the function itself and its context are targeted
• total: 11 additional benchmarks
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Benchmark results: recent vulnerabilities (selection)

Binsec/Rel2 Abacus ctgrind Microwalk
V T(s) V T(s) V T(s) V T(s)

RSA valid. (MbedTLS) 490.01 ✓ 0.40 ✓ 278.94
GCD 37.74 0.21 ✓ 22.96
modular inversion 242.10 ✓ 0.24 ✓ 141.82
RSA keygen (OpenSSL) 0.17 8.66 6.36 ✓ 842.02
GCD ✓ ✓ 0.19 ✓ 3.61
modular inversion ✓ 0.21 ✓ 5.96

• some vulnerabilities are missed because of implicit flows
• most tools do not support tainting internal secrets
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More details in our CCS 2023 paper!



Part 3: Constant-time: The Betrayal
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Constant-time code ̸= constant-time binary (1/4)

• the compiler is not your friend, it just wants to make stuff fast
• recent example: Kyber implementation, CVE-2024-37880, June 03, 2024

https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/

https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/
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Constant-time code ̸= constant-time binary (2/4)

Expanding a string into an array of integers, the wrong way

https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/

https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/
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Constant-time code ̸= constant-time binary (3/4)

Expanding a string into an array of integers, the right way

https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/

https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/
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Constant-time code ̸= constant-time binary (4/4)

Now, what does the compiler do with your code?

Yes, it✨ optimizes it✨

https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/

https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/


30

Constant-time code ̸= constant-time binary (4/4)

Now, what does the compiler do with your code?

Yes, it✨ optimizes it✨

https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/

https://pqshield.com/pqshield-plugs-timing-leaks-in-kyber-ml-kem-to-improve-pqc-implementation-maturity/


30

Constant-time code ̸= constant-time binary (4/4)

Now, what does the compiler do with your code? Yes, it✨ optimizes it✨
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Corollary

• constant-time code can produce non-constant-time binary
• any seemingly benign compiler update can break constant-time

Known problem... but few studies:

• either limited to short snippets or older i386 programs
• or providing only quantitative insights
→ lacking qualitative studies

L. Simon, D. Chisnall, and R. J. Anderson. “What You Get Is What You C: Controlling Side Effects in Mainstream C Compilers”. In: EuroS&P. 2018.
M. Schneider et al. “Breaking Bad: How Compilers Break Constant-Time~Implementations”. In: ASIA CCS. 2025.
L. Gerlach, R. Pietsch, and M. Schwarz. “Do Compilers Break Constant-time Guarantees?” In: FC. 2025.
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How do compilers break CT guarantees?
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Challenge: lack of ground truth

A two-fold problem:

binary CT violations

source CT violations

Potential solution: only analyze verified libraries
→ risks limiting experiment’s scope
→ developers often use non-verified libraries

...or apply manual filtering?
→ done in Schneider et al.
→ risks missing leakages
→ thwarted by function inlining
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Our approach: differential testing

co
mp
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r A

compiler B

Source benchmarks
MbedTLS and BearSSL from previous works

Compilers
LLVM 12/18 and GCC 9/13, O3 and Os

CT detection
Dynamic approach: Microwalk



34

Our approach: differential testing

co
mp

ile
r A

compiler B

resultA resultB

CT? CT?

Source benchmarks
MbedTLS and BearSSL from previous works

Compilers
LLVM 12/18 and GCC 9/13, O3 and Os

CT detection
Dynamic approach: Microwalk



34

Our approach: differential testing

co
mp

ile
r A

compiler B

resultA resultB

CT? CT?

̸=?

compiler-introduced CT violations

Source benchmarks
MbedTLS and BearSSL from previous works

Compilers
LLVM 12/18 and GCC 9/13, O3 and Os

CT detection
Dynamic approach: Microwalk



34

Our approach: differential testing

co
mp

ile
r A

compiler B

resultA resultB

CT? CT?

̸=?

compiler-introduced CT violations

Source benchmarks
MbedTLS and BearSSL from previous works

Compilers
LLVM 12/18 and GCC 9/13, O3 and Os

CT detection
Dynamic approach: Microwalk



35

Results

LLVM O3 GCC O3
Binaries v12 v18 v9 v13
RSA-mbedtls (PKCS) 47 47 52 48 ▼
RSA-mbedtls (OAEP) 46 48 ▲ 49 49
ECDSA-mbedtls 60 64 ▲ 61 62 ▲
RSA-bearssl (OAEP) 0 1 ▲ 0 0
ECDSA-bearssl 0 1 ▲ 0 0
poly_frommsg 0 1 ▲ 0 0
jump_threading 0 0 1 1
loop_unswitching 1 1 1 1
path_splitting 0 0 1 1

→ LLVM: general increase in
newer versions

→ not so much for GCC
→ both compilers can break CT
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Pass analysis (1)

We analyzed the detected CT violations using Compiler Explorer:

→ OptPipeline tool allows us to isolate problematic passes
→ GCC and LLVM break CT in different ways: code patterns and optimizations
→ Limitation: manual analysis
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Pass analysis (2)

Different pathways to breaking CT...

in LLVM:

Bitmask arithmetic

IR select

x86 cmov x86 jmp

InstCombine

optimizations

in GCC:

Ternary expression

GIMPLE if

x86 cmov x86 jmp

IfConversion

optimizations
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Example: RSA-bearssl in LLVM (1)

Goal: perform a CT array access for windowed RSA modular exponentiation

for (int u = 1; u < N; u++) {
uint32_t m;

m = -EQ(u, secret);
for (int v = 1; v < M; v++) {
t2[v] |= m & base[v];

}
base += M;

}

C source
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Example: RSA-bearssl in LLVM (1)

Goal: perform a CT array access for windowed RSA modular exponentiation

for (int u = 1; u < N; u++) {
uint32_t m;

m = -EQ(u, secret);
for (int v = 1; v < M; v++) {
t2[v] |= m & base[v];

}
base += M;

}

C source

for (int u = 1; u < N; u++) {
uint32_t m;

m = (u == secret);
for (int v = 1; v < M; v++) {
t2[v] |= select(m, base[v], 0);

}
base += M;

}

LLVM IR (represented as C for clarity)

Inlining

InstCombine
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Example: RSA-bearssl in LLVM (2)

This transformation by itself is safe...

for (int u = 1; u < N; u++) {
uint32_t m;

m = (u == secret);
for (int v = 1; v < M; v++) {
t2[v] |= select(m, base[v], 0);

}
base += M;

}
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Example: RSA-bearssl in LLVM (2)

This transformation by itself is safe... but allows further unsafe optimizations!

for (int u = 1; u < N; u++) {
uint32_t m;

m = (u == secret);
for (int v = 1; v < M; v++) {
t2[v] |= select(m, base[v], 0);

}
base += M;

}

for (int u = 1; u < k; u++) {
uint32_t m;

m = (u == secret);
if (m) {
for (int v = 1; v < M; v++) {

t2[v] |= base[v];
}

}
base += M;

}

LoopUnswitch
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Example: RSA-bearssl in LLVM (2)

This transformation by itself is safe... but allows further unsafe optimizations!

for (int u = 1; u < N; u++) {
uint32_t m;

m = (u == secret);
for (int v = 1; v < M; v++) {
t2[v] |= select(m, base[v], 0);

}
base += M;

}

for (int u = 1; u < k; u++) {
uint32_t m;

m = (u == secret);
for (int v = 1; v < M; v++) {
if (m) {

t2[v] |= base[v];
}

}
base += M;

}

CmovConversion
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What can we do about it?

😱 high-assurance cryptography 
(e.g., Jasmin)

→ requires a change in 
language
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What can we do about it?

😱 high-assurance cryptography 
(e.g., Jasmin)

→ requires a change in 
language

😫 specialized compilers 
(e.g., CompCert)

→ requires a change in 
compiler

😬 code modifications and assembly → can break with compiler 
updates, portability issues
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Mitigations

We investigate a simple mitigation: disabling problematic optimizations

→ using (sometimes undocumented) compiler flags
→ GCC: we disable loop unswitching, jump threading and path splitting
→ LLVM: we disable loop unswitching, loop vectorization and cmov conversion

Evaluation

→ effectiveness: rerun our benchmarks compiled with the mitigating flags
→ performance: reusing the libraries’ existing performance benchmarks
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Results

LLVM O3 GCC O3

Binaries
Mitig.? No Yes No Yes

RSA-mbedtls (PKCS) 47 46 ▼ 48 50 ▲
RSA-mbedtls (OAEP) 48 46 ▼ 49 49
ECDSA-mbedtls 64 61 ▼ 62 62
RSA-bearssl (OAEP) 1 0 ▼ 0 0
ECDSA-bearssl 1 0 ▼ 0 0
poly_frommsg 1 0 ▼ 0 0
jump_threading 0 0 1 0 ▼
loop_unswitching 1 0 ▼ 1 0 ▼
path_splitting 0 0 1 0 ▼

• Decrease in vulnerability
• CT binaries remain CT
• Negligible performance
impact
→ BearSSL: −3.30% (GCC),
−0.43% (LLVM)

→ MbedTLS: −0.71% (GCC),
−1.14% (LLVM)
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What can we do about it? (cont’d)

😱 high-assurance cryptography 
(e.g., Jasmin)

→ requires a change in 
language

😫 specialized compilers 
(e.g., CompCert)

→ requires a change in 
compiler

😬 code modifications and assembly → can break with compiler 
updates, portability issues

😌 disabling compiler optimizations 
with flags

→ developers can focus on 
their core expertise
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More details in our arXiv pre-print!



Perspectives & Conclusion
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Speculative 
execution

Dynamic 
frequency 
scaling

Data memory-dependant
prefetcher

Future optimisations?

Constant time
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Code that is ”constant-time”

(and considered secure until recently)
can be vulnerable too!
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Conclusions

• first paper by Kocher in 1996: almost 30 years of research in this area

• domain still in expansion: increasing number of papers published since 2015
• micro-architectural attacks & defenses require a:

• low-level understanding of hardware→micro-architecture, reverse-engineering
• low-level understanding of software→ program analysis, compilation,
cryptography...

→ work across all abstraction layers!
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Thank you!

Contact

clementine.maurice@inria.fr



From Theory to Practice: Detecting and Preserving
Constant-Time
A story of constant time, struggles, and betrayals

Clémentine Maurice, CNRS, CRIStAL
November 19, 2025 — C&ESAR Keynote
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Recommendations

#1 Support for vector instructions

#2 Support for indirect flows

#3 Support for internally
generated secrets (e.g. key
generation)

#4 Promote usage of a
standardized benchmark

#5 Improve usability for static
tools (e.g. core-dump initialization)

#6 Make libraries more static
analysis friendly
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