
Henrik Plate (Endor Labs)
Nov 2025

Attacks on Open Source
Supply Chains

—
Case Studies,

Vectors, and Defenses

 __
/ This talk is not a critique of open- \
| source software. Most open-source |
| projects rely on the hard work of |
| volunteers, whose valuable contributions|
| are often overlooked. The best way to |
\ help open-source is to fund it! /
 --
 \ ^__^
 \ (oo)_______
 (__)\)\/\\
 ||----w |
 || ||

Cowsay, courtesy of Tony Monroe

Before we start

Introduction

Open-Source-Based Software Development

Deps. of Graph Maven Plugin

1st-Party Code

3rd-Party
Components

http://site.kuali.org/maven/plugins/graph-maven-plugin/1.2.3/graph/examples/3.png

Open-Source-Based Software Development

[1] Synopsis: https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/2018-ossra.pdf (2018)
[2] Andreas Dann et al.: Identifying Challenges for OSS Vulnerability Scanners - A Study & Test Suite (2022)

- Average composition of Java projects developed at SAP (average: 95 deps) [2]

- 80-90% of software products include OSS, 10-76% of the overall code base [1]

https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/2018-ossra.pdf

Open-Source-Based Software Development

- Supply-side value of OSS is estimated between $1.22 to $6.22 billion, the
demand-side value between $2.59 trillion to $13.18 trillion [2]

[1] M. Zimmermann, et al.: Small World with High Risks: A Study of Security Threats in the npm Ecosystem (2019)
[2] Manuel Hoffmann et al.: The Value of Open Source Software, Harvard Business School (2024)

- Created by numerous – partly anonymous – contributors from all around the globe

Fig 11: Combined reach of
100 influential maintainers [1]

Open Source Supply Chain Attacks

Open Source Supply Chain Attacks
“Standard” supply chain attack – Compromise a software vendor’s infrastructure and infect
legitimate software such that malware is delivered through trusted distribution channels
(NotPetya, etc.)

Around 2017, attackers started compromising the infrastructure and practices of
open-source-based software development, such that downstream users depend on
components with malicious code.

a c1 c1-c1

c1-c1-t1

c1-c1-b1

compile

compile

test

build

t1test
t1-c1

compile

b1
build

All dependency scopes matter!

Open Source Supply Chain Attacks
- Researchers and attackers continuously find new attack vectors and vulnerabilities

- Attacks range from “simple” ones – mass-produced and automated [1] – to targeted
and resource-intense attacks à la XZ Utils

[1] Checkmarx: A Beautiful Factory for Malicious Packages (2022)
[2] Sonatype: 9th Annual State of the Software Supply Chain (2023)

[2]

Motivating Examples
Attacks, Vulnerabilities and PoCs

Oct 2018
PyPI package Colourama

- Downloads and runs VBScript cryptocurrency clipboard hijacker
- Persists through Windows registry entry, to execute upon user logon

[1] Bertus: Cryptocurrency Clipboard Hijacker Discovered in PyPI Repository (2018)

https://bertusk.medium.com/cryptocurrency-clipboard-hijacker-discovered-in-pypi-repository-b66b8a534a8

Nov 2018
Successful attack on NPM package event-stream

- 1.5+ million downloads/week, 1600 dependent packages

- When contacted by mail, the original developer handed-over the ownership to
“right9control”

- Added dependency on the malicious package flatmap-stream

- Malicious code (and encrypted payload) only present in published NPM package

- Malware and decryption only ran in the context of a release build of the bitcoin
wallet copay

- Credentials.getKeys was monkey-patched and exfiltrated wallet credentials

- Malware was discovered only by incident: Use of deprecated command resulting
in a warning

- https://www.theregister.co.uk/2018/11/26/npm_repo_bitcoin_stealer/
- https://medium.com/intrinsic/compromised-npm-package-event-stream-d47d08605502

Feb 2021
Dependency Confusion

- Attacker learns about proprietary
package names

- Malicious versions get published with
same name (and higher version no.) in
public registries

- Buggy dependency resolution
mechanisms wrongly download the
public package

[1] https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610

Nov 2021
PoC: Exploit Unicode encoding

- Different handling of Unicode control characters during display and
compilation/interpretation Exploit techniques: Stretched-string,
commenting-out, early-return

- Working examples for C, C++, C#, JavaScript, Java, Rust, Go, and
Python

- Comparable: Use of (Unicode) homoglyphs

[1] N. Boucher, R. Anderson: Trojan Source: Invisible Vulnerabilities (2021)

https://www.trojansource.codes/trojan-source.pdf

Nov 2024 – Mar 2025
Successful attack on tj-actions/changed-files

- Malicious code added to index.js, dumping secrets from the workflow runner's memory to the log
- Commit impersonated renovate[bot], added to fork that got autom. merged
- Tags got changed to reference the malicious commit (one used by coinbase/agentkit, then all)

Impact: Workflow secrets of direct/indirect consumers of changed-files@<tag> get logged

[1] Palo Alto Networks: GitHub Actions Supply Chain Attack
[2] StepSecurity: Harden-Runner detection: tj-actions/changed-files action is compromised

How? Attacker got write access to tj-actions through a series of
poisoned PRs in upstream repos of two other orgs, each leaking
PATs during workflow runs [1]

Takeaways
- Sign commits & protect branches
- Pin your actions to commits (instead of using mutable tags)
- Avoid PATs, at least restrict permissions & lifetime
- Avoid the pull_request_target trigger (workflows running from forks can access repo secrets, …)
- Tags can point to commits in GitHub's fork network

https://unit42.paloaltonetworks.com/github-actions-supply-chain-attack/?ref=blog.gitguardian.com
https://www.stepsecurity.io/blog/harden-runner-detection-tj-actions-changed-files-action-is-compromised?ref=blog.gitguardian.com
https://docs.github.com/en/actions/writing-workflows/choosing-when-your-workflow-runs/events-that-trigger-workflows#pull_request_target

Nov 2024 – Mar 2025
Successful attack on tj-actions/changed-files

Thanks to the quick discovery, only few out of 23,000 downstream repos got
compromised [1, 2]

[1] Endor Labs: Blast Radius of the tj-actions/changed-files Supply Chain Attack (19 Mar 2025)
[2] GitGuardian: Compromised tj-actions/changed-files GitHub Action: A look at publicly leaked secrets (18 Mar 2025)

https://www.endorlabs.com/learn/blast-radius-of-the-tj-actions-changed-files-supply-chain-attack
https://blog.gitguardian.com/compromised-tj-actions/

Aug 2025
Compromise of the NX Build System (s1ngularity)

- Compromise of existing package

- Post-install hook triggers payload

- Environment variables exfiltrated to newly created

public repository s1ngularity-repository[-<n>]

- New: Malware searched for local AI code assistants

to search for additional secrets on the

compromised system

- Later on: Exfiltrated secrets were used to make

private repositories public

[1] Endor Labs: Nx build platform compromised by supply chain attack – How attackers collude with AI code assistants (27 Aug 2025)

https://www.endorlabs.com/learn/nx-build-platform-compromised-by-supply-chain-attack---how-attackers-collude-with-ai-code-assistants

Sep 2025
Shai-Hulud

- Compromise of ~200 packages, including popular ones
from @crowdstrike or @ctrl

- 3.7 MB Webpack-minified script, triggered through
installation hook

- Replicates in other packages of the same author,
implements an npm worm described as early as 2016 [2]

- Exfiltrates local credentials (from environment and
Trufflehog) and GitHub credentials (by creating + running
a new GitHub Actions workflow
.github/workflows/shai-hulud-workflow.yml)

[1] Endor Labs: npm Malware Outbreak: Tinycolor and CrowdStrike Packages Compromised (16 Sep 2025)
[2] Chris Contolini: Building an npm worm (2016)

https://www.endorlabs.com/learn/npm-malware-outbreak-tinycolor-and-crowdstrike-packages-compromised
https://contolini.com/building-an-npm-worm

2024 – 2025
Indonesian Foods Worm

- >80K npm packages by >50 npm accounts since early 2024 (> 1% of the ecosystem)

- Inert until the executing of selected JS files, which publish copies of the package in
7-10 second cycles

- Two naming schemes, one using Indonesian names and food terms, e.g.,
budi-sate73-kyuki

- Many packages contain tea.yaml files, and reference each other through circular
dependencies, to inflate their “impact scores” and claim TEA token rewards

- Abuse already discovered in 2024, but most packages remained

[1] Endor Labs: The Great Indonesian TEA Theft: Analyzing a NPM Spam Campaign (11 Nov 2025)
[2] Sonatype: Devs Flood npm with 15,000 Packages to Reward Themselves with Tea 'tokens' (2024)

https://www.endorlabs.com/learn/the-great-indonesian-tea-theft-analyzing-a-npm-spam-campaign
https://www.sonatype.com/blog/devs-flood-npm-with-10000-packages-to-reward-themselves-with-tea-tokens

Systematization

Open-Source-Based Software Development

Version Control Build System Distribution Platformclone
pull

publish

MaintainersContributors

Consumers

PyPI, Maven Central, npm,
arbitrary websites, etc.

Git hosted by GitHub, Apache, etc.

Developer machine, CI/CD pipeline, etc.

Example Attack Vectors

Version Control Build System Distribution Platformclone
pull

publish

Maintainers

Consumers

AV: Exploit vulns.
(packagist.org ‘21, npm ‘21)

AV: Account take-over
(ua-parser-js ‘21,

shai-hulud ‘25)

AV: Contribute as maintainer
(event-stream ’18, peacenotwar ‘22, xz-utils ‘24)

AV: Create name confusion
(colourama ‘18)

AV: Exploit vulns.
(PHP ‘21)

AV: Expl. Rendering Weak.
(Trojan Source ‘21,

Dependabot ‘24)

AV: Abuse Dep. Resolution
(Dependency Confusion ‘21)

Backstabber’s Knife Collection [1]

- Dataset with packages in real-world attacks [2]

- 147 packages across 4 ecosystems (Nov 2015 - Nov 2019)

- Today: >6000+ across 6 ecosystems

- Analysis of temporal aspects, trigger, conditional execution,

injection technique, primary objective, targeted OS,

obfuscation used and clusters

[1] Marc Ohm, et al.: Backstabber’s knife collection: A review of open source software supply chain attacks (2020)
[2] https://dasfreak.github.io/Backstabbers-Knife-Collection/

Attack Surface
Comprises the development and
distribution infrastructure of all
upstream open source components:

- Maintainers and contributors
- Developer machines
- SCM and Build Systems
- Etc.

[1] Piergiorgio Ladisa, Henrik Plate, Matias Martinez, Olivier Barais: Taxonomy of Attacks on Open-Source Software Supply Chains (2023)
[2] https://sap.github.io/risk-explorer-for-software-supply-chains
[3] https://riskexplorer.endorlabs.com/

Taxonomy with 100+ attack vectors,
based on 300+ resources, and linked to
safeguards [1]

Use-cases comprise awareness, threat
modeling, pentest scoping, etc.

Interactive visualization developed and
open-sourced at SAP Security Research
[2], forked at Endor Labs [3]

Detection & Evasion

Metadata-based
- Account (age, past contributions, etc.)
- Package (name, age, pub times/frequency, etc.)

Build credible history, inflate download numbers

Common
detection
techniques

(non-exhaustive)
Static

- Obfuscated, encrypted, long or high-entropy strings
- Detection of “typical” patterns or data flows [1]

(dropper, env exfiltration, install hooks, etc.)
- Presence of executables/compiled code
- Capability changes across versions
- Comparison with source repo [3]

Split payloads, perform dynamic calls, …

Dynamic
- Monitor sandboxed execution

(e.g. OpenSSF project package-analysis)

Delay or condition execution

[1] Zhang J., et al.: Malicious Package Detection in NPM and PyPI using a Single Model of Malicious Behavior Sequence (2023)
[2] Ohm, M. et al.: SoK: Practical Detection of Software Supply Chain Attacks
[3] Duc-Ly Vu, et al.: LastPyMile: identifying the discrepancy between sources and packages

https://github.com/ossf/package-analysis/
https://arxiv.org/abs/2309.02637

ttlo & gisi
- Published April 16, 2023
- Removed July 7 following

our email to PyPI
- Downloaded 1291 times and

667 times

gisi (still on PyPI Inspector)

- SQL select to search for Instagram session
identifiers in the SQLite database that contains
Chrome cookies on Windows

- Upon success, update expiry date and return value

ttlo (still on PyPI Inspector)

- Call gisi() and upload session identifier to
https://api.telegram.org/

Malicious behavior requires presence of both packages,
but it is unclear how that is achieved.

https://inspector.pypi.io/project/gisi/1.0.3/packages/8e/64/a8052a314c8a13b60b46aec606543e68a782284a0542d66dfcf231d5f05d/gisi-1.0.3.tar.gz/gisi-1.0.3/gisi/gisi.py#line.9
https://inspector.pypi.io/project/ttlo/1.0.1/packages/06/84/60c7ff3b5a4a8ce90d18b8329ed089fe3de2ebb71e7f55ee9d8cd1914303/ttlo-1.0.1.tar.gz/ttlo-1.0.1/ttlo/ttlo.py#line.6

Evasion
Techniques

1) Encoded strings + call of decode function in
separate functions and files

r.post(base64.b64decode(‘aHR…Z2U=’, …
becomes r.post(b(a), …

Static detection of request to obfuscated URL
requires inter-procedural data flow analysis

2) Gathering and exfiltration of sensitive info in
separate packages

from gisi.gisi import *
r.post(..., b(d): gisi()})

Static detection requires whole-program analysis

Selected Safeguards ($ – $$$)

Isolate build jobs
and build steps

Minimize release
jobs

Build deps from
sources Vet ALL

dependencies

Cooldown Periods

Malware
Scan

Verify
signatures

Version Control Build System Distribution Platform
pull

publish

Remove Bloat

Name confusion attacks

- Mostly easy to spot, low download numbers
- High automation results in low marginal costs

(i.e. attackers will continue campaigns anyhow)

Get used to it, just like you got used to spam!

Compromise of legitimate package

- Social-engineering to inject into sources,
e.g. Dependabot impersonation (July 2024)

- Esp. introduction of deliberate vulnerabilities is more
difficult to detect (and can plausibly be denied)

We all depend on diligent OSS maintainers!

Outlook

Deliberate Vulnerability

Technically, vulnerable and malicious code can be identical, intention makes the difference

Attackers could (re)introduce vulnerabilities and plausibly deny intention

Example: Attempt to add the following to sys_wait4() in the Linux kernel 2.6 [1]

if ((options == (__WCLONE|__WALL)) && (current->uid = 0))

retval = -EINVAL;

[1] Wysopal, C., End, C.: Static Detection of Application Backdoors (2010)

= != ==

Thank you!

Email henrik@endor.ai
LinkedIn henrikplate

