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Who Am I? — PhD Student, Digital Twins & Cybersecurity
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My research focuses on leveraging 
Digital Twins to model system 

behavior and estimate ongoing or 
future cyber attacks.

 🎓 PhD Student – IMT Atlantique & UQAC 
(Cotutelle France–Canada)

 🧩 Member of the Industrial Chair CyberCNI

 📅 2nd year PhD – 2024 → 2028

 🧠 Research Focus: Digital Twins, Machine 
Learning, Cyber-Physical Systems Security
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Modelization of the reference system within 
the DT.

Using DTs for simulating side-channel 
measurements for better attack detection.

Using DTs for more comprehensive risk 
analysis.

Goal 1

Goal 2

Goal 3

Who Am I?
Goals of my thesis
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Let’s break down Digital Twin
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Let’s break down Digital Twin
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Physical
System

Digital
System

Data flow

Data/command 
flow

Fig 1: Digital Twin core 
principle
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Let’s break down Digital Twin
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1.Gather reference system 
data

Aggregate and 
normalize

Storage and 
integrity

Fig 2: Digital Twin architecture
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Let’s break down Digital Twin
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2.Physical system 
modelization

Represent 
system’s state

Make 
simulations

Fig 2: Digital Twin architecture
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Let’s break down Digital Twin
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3.Data and metric 
analysis

Get alerts or 
recommandatio

ns

Responses or 
actions

Fig 2: Digital Twin architecture
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Let’s break down Digital Twin
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4.Visualization & Decision

Present the 
results to 

dashboards

Send command 
control to the 

system

Fig 2: Digital Twin architecture
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Let’s break down Digital Twin
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Digital Twin Consortium Periodic Table

Fig 3: Digital Twin consortium periodic 
table

1.

2. & 3.

4.
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Let’s break down Digital Twin
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Modelization

Analysi
s

Fig 2: Digital Twin Architecture
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Digital Twin Literature
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Taxonomy application

Fig 4.1: Positioning of paper using ML with DT within the 
taxonomy
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Digital Twin Literature
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Taxonomy application
Deployment 
and location

Synchronizatio
n

Main security 
role

Evolution 
strategy

Learning 
method ML Horizon

(R.1) Passive Monitoring : Observation and state collection.
(R.2) Intrusion Detection (IDS) : Identification of known/unknown attacks.
(R.3) Proactive Detection (Prediction) : Forecasting attacks before exploitation.
(R.4) Decision Support : Assisting operators in response actions.
(R.5) Post-Incident Analysis (Forensics) : Reconstruction after an attack.

(E.1) Static (Fixed Model) : Trained once without updates.
(E.2) Incremental : Continuously updated as new data arrives.
(E.3) Federated : Distributed training across multiple DTs or entities.
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Digital Twin Literature
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Taxonomy application

Fig 4.2: Positioning of paper using ML with DT within the 
taxonomy
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Digital Twin Literature
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Taxonomy application
Deployment 
and location

Synchronizatio
n

Main security 
role

Evolution 
strategy

Learning 
method ML Horizon

(H.1) Reactive : Immediate attack detection based on reference system flows.
(H.2) Short-term Estimation : Predicting imminent events such as drifts or 
anomalies.
(H.3) Long-term Evaluation : Risk analysis and resilience planning.
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Digital Twin Literature
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Taxonomy application

Fig 4.3: Positioning of paper using ML with DT within the 
taxonomy
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Digital Twin Literature
Reference System Models for Cybersecurity

19Fig 2: Layers of DT architecture

Fig 5: Layers of DT architecture applied with 
ML
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Emerging Approaches: From 
Data-Driven to Model-Aware 

Digital Twins
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Most Digital Twins Only Mirror Data — Not System 
BehaviorWithout an explicit model of the reference system, detection stays 

reactive.
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Network, hardware, applications, logs, …

Anomaly detection, attack detection, …

Fig 6: Dataflow using ML model

AI

DataReferenc
e system

Analysis
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AI

DataReferenc
e system

Analysis

Most Digital Twins Only Mirror Data — Not System 
BehaviorWithout an explicit model of the reference system, detection stays 

reactive.

Fig 6: Dataflow using ML model
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AI

DataReferenc
e system

Analysis

Most Digital Twins Only Mirror Data — Not System 
BehaviorWithout an explicit model of the reference system, detection stays 

reactive.

Fig 6: Dataflow using ML model

This limits detection to 
reactive analysis and 
prevents forecasting.
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Fig 7: Known attack pattern

Attack

Attack ?

Modelizing the Reference System Enables Proactive 
Estimation

From observation  to estimation  to anticipation.→ →
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Estimate

Estimate

Fig 8: Attack estimation

Modelizing the Reference System Enables Proactive 
Estimation

From observation  to estimation  to anticipation.→ →
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● Proactive detection with event forecasting

● Allow data validation and coherence based 
on model on the DT before passing it to 
the ML pipeline

● Can go even further by passing, settings, 
parameters, comportement based 
observation to the ML pipeline

● Allow coupling with physical parameters to 
enhance the detection

From Modelization to Learning 
PipelinesSystem modeling provides the foundation for safe ML training and 

estimation.
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Metrics to determine probability of 
attack

Fig 9: Attack estimation lifecycle

Modelizing the Reference System Enables Proactive 
Estimation

From observation  to estimation  to anticipation.→ →
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Machine Learning Pipeline in the Digital 
TwinTraining the model safely, applying it reliably.

Training Phase (Offline)

● Data: validated logs, attack simulations, 
side-channel measurements

● Goal: learn decision boundaries via 
backpropagation

● Outputs: trained weights → frozen model

Inference Phase (Online)

● Data: live DT data stream
● Goal: detect & estimate attacks using 

forward pass only
● No backpropagation, model is read-only
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Preventing Model Contamination
Only validated data feeds training, never online events

Training Backpropagation Updated Model

Inference Forward pass only Backpropagation

No learning from 
live attack data
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Preventing Model Contamination
Only validated data feeds training, never online events

No online backpropagation, good to avoid 
poisoning, but no update over time?
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Forecasting Mode: Testing Without 
LearningUse the trained model to simulate and estimate risks.

Occurring events

Add data to 
current dataset

Estimations

Inference ML 
Pipeline

Result of 
analysis: Attack 
probability, …

Real Events 
dataset

Report
No backpropagation, 

no weight update
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Continuous Learning from Validated 
EventsUse confirmed incidents to update the model offline.

Real Event 
dataset

Human 
Validation

Training dataset

Retrain (Offline)Model v2Deploy



Hugo BOURREAU | cyberCNI.fr 33

Dual-Pipeline Learning: Safe Adaptation and Reliable 
Prediction

Use the trained model to simulate and estimate risks.

● Training (backpropagation) happens offline 
on validated data.

● Inference (forward pass) happens online, 
no learning.

● Events can later enrich the training dataset 
after validation.

● This ensures robustness, traceability, and 
resistance to data poisoning.

Fig 10: Dual ML Pipeline
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Expand observability: Incorporate measurable physical indicators into the Digital Twin.

Enhance estimation: Use these parameters to improve attack precision, anticipate consequences, and 
localize anomalies.

Validate prediction: Evaluate how added physical features affect accuracy and detection latency across 
datasets and testbeds.

Toward Predictive Digital Twins for Cyber-Physical 
Security

Integrating Physical Parameters for Attack Detection

Identification of physical impact

CPU 
Load

Electric 
consumptio

n Memory 
usage

Noise of the 
system

Temperature 
of a 

component

GPU Load

Fan speed

Human 
interactions 
(Operators) Physical 

access

Fig 10: Hardware parameters
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Ensuring Continuous Trust in the ML Pipeline
Automated validation and regression testing for DT-based ML.

Model 
Update

Validation 
tests

Performanc
e 

comparison
Deploymen

t Monitoring

Like for software 
build, unit test, 
end-to-end, …

Objective: Pass 
some required 
specifications

Compare 
precision, 

recall, latency, 
and drift.

Use versioning 
for 

reproducible 
evaluations.
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Challenges
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Key Challenges: Data and Knowledge
High-quality, multi-domain data remains the main bottleneck.

Aspect Label

 Database📊 Data realism & quality (CPS + side-
channel)

 Sources🌍 Diversity & representativeness

 Correlation🧩 Link physical and logical worlds

 Precision📈 Benchmarking & validation

Multi-domain, synchronized datasets are the foundation but remain scarce.
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Key Challenges: Modele usage
Model validation

● Validating DT behavior vs. real 
system is complex.  How to ⇒
modelize the comportment of the 
reference system? Physical 
equation, correlation, …

● ML trained on one DT may fail in 
another due to parameter shifts.

Model fidelity

Computational cost 
& Generability

Simplistic DT: fast 
but unrealistic

Full-fidelity DT: accurate 
but impractical

Medium abstraction: 
balanced model
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Summary
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Most important 
slide 

(screenshot)
2nd most 

important slide

3rd most 
important slide

4th most 
important slide
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My presentation in a Nutshell

Contact: hugo.bourreau@imt-atlantique.fr

mailto:hugo.bourreau@imt-atlantique.fr
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