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Who Am I? — PhD Student, Digital Twins & Cybersecurity

@ PhD Student — IMT Atlantique & UQAC
(Cotutelle France—Canada)

My research focuses on leveraging
Digital Twins to model system
behavior and estimate ongoing or
future cyber attacks.

%> Member of the Industrial Chair CyberCNI
2nd year PhD — 2024 -, 2028

- Research Focus: Digital Twins, Machine
Learning, Cyber-Physical Systems Security

P
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Who Am I?

Goals of my thesis

Modelization of the reference system within
Goal1 theDT.

Goal 2 Using DTs for simulating side-channel
measurements for better attack detection.

Goal 3 Using DTs for more comprehensive risk
analysis.

@ Hugo BOURREAU | cyberCNLfr
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Let's break down Digital Twin

O ~, Dataflow >
Physical " Digital
System System

Data/command
flow

Fig 1: Digital Twin core
principle
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Let's break down Digital Twin

Cyber-Physical System

<€
Sensors, Processes Environment
Actuators
Real-time Status, logs,
data alerts

Data acquisition & Secure comunication

/

‘@lnseawa)unog ‘|o4u0)

Normalized,
aggregated data
§
Digital Twin Model Layer o
S
Physical Control Network ~
model model model
\ /
Feature vectors,
Behavior deviations,
Detected anomalies,
Incidents, Metrics
Y

Digital Twin

Security analysis, Al, IDS, Anomaly detection,
threat simulation, what-if analysis, ...

Suggestions,
alerts

control commands

l Response, actions,

HMI, Visualization
(Dashboards, XAl)

Decision & Actuation
(Auto, semi-auto)

1.Gather reference system
/ y

Aggregate and Storage and
normalize integrity

Fig 2: Digital Twin architecture
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Let's brea

K

Cyber-Physical System

down Digital Twin

<
Siensors, Processes Environment
Actuators
Real-time Status, logs,
data alerts
Data acquisition & Secure comunication
Normalized, Q
- |
aggregated data 5

(9]
@]
Digital Twin Model Layer =
@
Physical Control Network ?D
model model model §
\ / o
Feature vectors,
Behavior deviations,
Detected anomalies,
Incidents, Metrics
Y

Digital Twin

Security analysis, Al, IDS, Anomaly detection,
threat simulation, what-if analysis, ...

Suggestions,
alerts

Response, actions,
control commands

HMI, Visualization
(Dashboards, XAl)

Decision & Actuation
(Auto, semi-auto)

2.Physical system
/ modefization

Represent Make
system's state simulations

Fig 2: Digital Twin architecture
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Let's brea

Cyber-Physical System

k down Digital Twin

<€
Sensors, Processes Environment
Actuators
Real-time Status, logs,
data alerts

Data acquisition & Secure comunication

Digital Twin

Security analysis, Al, IDS, Anomaly detection,
threat simulation, what-if analysis, ...

Suggestions,
alerts

l

HMI, Visualization
(Dashboards, XAl)

Decision & Actuation
(Auto, semi-auto)

Normalized,
aggregated data
g‘
Digital Twin Model Layer o
S
Physical Control Network ~
model model model
\ /
Feature vectors,
Behavior deviations
Detected anomalies,
Incidents, MetriCs
Y

Response, actions,
control commands
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Fig 2: Digital Twin architecture
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Let's break down Digital Twin

Cyber-Physical System

<€
Sensors, Processes Environment
Actuators
Real-time Status, logs,
data alerts

Data acquisition & Secure comunication

Normalized,
aggregated data

Digital Twin Model Layer

Physical Control Network
model model model

\ [

Joeqpos}
‘@lnseawa)unog ‘|o4u0)

Feature vectors,
Behavior deviations,
Detected anomalies,

c
2 Incidents, Metrics
= 4
T
50) Security analysis, Al, IDS, Anomaly detection,
threat simulation, what-if analysis, ...
Suggestions, Response, actiogs,
alerts control commahds
HMI, Visualization Decision & Actuation
(Dashboards, XAl) (Auto, semi-auto)

Fig 2: Digital Twin architecture
?\k Hugo BOURREAU | cyberCNI.fr

4.Visualization & Decision

Present the Send command
results to control to the
dashboards system
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Let's break down Digital Twin

Digital Twin Consortium Periodic Table

DS.AR

Al Model
Repository

DS.SR

Simulation Model
Repository

DS.SA

Data Storage and
Archive Services

DS.DS

Domain Specific
Data Management

DS.IR

Digital Twin Instance
Repository

DS.RP
Digital Twin
Model Repository

DS.ON
Ontology Management

DSSG

Synthetic Data
(Generation

DS.AG

Data
Aggregation

DS.AS

Asynchronous
Integration

DS.RT
Real-time Processing

DS.BP
Batch Processing

DS.CX

Data
Contextualization

DS.TR

Data Transformation
and Wrangling

DS.ST

Data Streaming

DS.AI

Data Acquisition
and Ingestion

Data Services

Hugo BOURREAU | cyberCNI.fr

Integration

MG.DG

Data Governance

MG.EL
Event Logging

Intelligence

UX.GM UX.DB
o o Gamification Dashboards
IC.CS ICSM IC.RP UXJ3R UX.XR
Composition Simulation Reporting 3D Rendering Extended Reality (XR)
IC.DL IC.FL IC.AL UX.GE UX.ER
Distributed Ledger Federated Learning Alerts and Gaming Engine Entity Relationship
and Smart Contracts Notifications Visualization Visualization
IC.BR IC.Al IC.0S UX.BP UX.RM
Business Rules Artificial Intelligence Orchestration Business Process Real-time Monitoring
Mgmt & Workflow
IC.PS IC.PR ICIC UX.BI UX.AV
Prescriptive Prediction Command and Business Advanced
Recommendations Control Intelligence Visualization
ICM{L IC.AA : IC.SR [_JX'CI UX.BV
Mathematical Data Analysis O Continuous Bl s lions
Analytics and Analytics e Intelligence e R
MG.SM TW.RP TW.RL TW.PR TW.DS
System Monitoring Responsibility Reliability Privacy Device Security
MG.DM TW.RS TW.SF TWSC TWEX
Device Management Resilience Safety Security Data Encryption
UX Management Trustworthiness

Fig 3: Digital Twin consortium periodic
table
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Let's break down Digital Twin

Analysi
S
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Cyber-Physical System

<
Sensors, Processes Environment
Actuators
Real-time Status, logs,
data alerts

Data acquisition & Secure comunication

Normalized,
aggregated data

DIJUOD)

Digital Twin Model Layer

Physical Control Network
model model model

5oBQPaD)

‘alnseajuiajunod

\

[

Y

Feature vectors,
Behavior deviations,
Detected anomalies,

Incidents, Metrics

Dlgital Twin

Security analysis, Al, IDS, Anomaly detection,
threat simulation, what-if analysis, ...

Suggestions,
alerts

Response, actions,
control commands

HMI, Visualization
(Dashboards, XAl)

Decision & Actuation

(Auto, semi-auto)

Fig 2: Digital Twin Architecture
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Digital Twin Literature

Taxonomy application

Ref Deployment Synchronization Main  security Evolution Learning Al/ML Hori-
role strategy method zon

[1]  On-site Continuous Intrusion detec- Static Supervised Reactive
tion

[2] Edge Continuous Proactive detec- Static Supervised Short-term
tion estimation

[3] On-site Continuous Intrusion detec- Static Unsupervised Reactive
tion

(4] Hybrid Periodic Decision support  Static Supervised Short-term

estimation

[5] Cloud Continuous Intrusion detec- Static Semi- Reactive
tion supervised

[6] Cloud Continuous Proactive detec- Static Supervised Short-term
tion estimation

[7] Edge/Hybrid  Continuous Proactive detec- Static Unsupervised Short-term
tion estimation

(8] Cloud Periodic Intrusion detec- Static Supervised Reactive

tion

AN
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Fig 4.1: Positioning of paper using ML with DT within the

taxonomy
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Digital Twin Literature

Taxonomy application

4 N
Synchronizatio
N
\_ /

-

(&

Main security
role

~

)

-

(&

Evolution
strategy

~

)

R.1) Passive Monitoring : Observation and state collection.
R.2) Intrusion Detection (IDS) : Identification of known/unknown attacks.

R.3)
R.4)

R.5)

-

Learning
method

~

Proactive Detection (Prediction) : Forecasting attacks before exploitation.
Decision Support : Assisting operators in response actions.
Post-Incident Analysis (Forensics) : Reconstruction after an attack.

\

ML Horizon

/

(E.1) Static (Fixed Model) : Trained once without updates.
(E.2) Incremental : Continuously updated as new data arrives.
(E.3) Federated : Distributed training across multiple DTs or entities.

AN
- Hugo BOURREAU | cyberCNI.fr
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Digital Twin Literature

Taxonomy application

Ref Deployment Synchronization /Main  security  Evolution Learning Al/ML Hori-
role strategy method zon

[1]  On-site Continuous Intrusion detec- Static Supervised Reactive
tion

[2] Edge Continuous Proactive detec- Static Supervised Short-term
tion estimation

[3] On-site Continuous Intrusion detec- Static Unsupervised Reactive
tion

(4] Hybrid Periodic Decision support  Static Supervised Short-term

estimation

[5] Cloud Continuous Intrusion detec- Static Semi- Reactive
tion supervised

[6] Cloud Continuous Proactive detec- Static Supervised Short-term
tion estimation

[7] Edge/Hybrid  Continuous Proactive detec- Static Unsupervised Short-term
tion estimation

(8] Cloud Periodic Intrusion detec- Static Supervised Reactive

tion

AN
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Fig 4.2: Positioning of paper using ML with DT within the

taxonomy
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Taxonomy application
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-

\

Main security
role

~

/

-

\

Evolution
strategy

~

)

-

Learning
method

~

(H.1) Reactive : Immediate attack detection based on reference system flows.
(H.2) Short-term Estimation : Predicting imminent events such as drifts or
anomalies.
(H.3) Long-term Evaluation : Risk analysis and resilience planning.

-

(&

ML Horizon

~

)
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Digital Twin Literature

Taxonomy application

Ref Deployment Synchronization Main  security Evolution Learning Al/ML Hori-
role strategy method zon

[1]  On-site Continuous Intrusion detec- Static Supervised Reactive
tion

[2] Edge Continuous Proactive detec- Static Supervised Short-term
tion estimation

[3] On-site Continuous Intrusion detec- Static Unsupervised | Reactive
tion

(4] Hybrid Periodic Decision support  Static Supervised Short-term

estimation

[5] Cloud Continuous Intrusion detec- Static Semi- Reactive
tion supervised

[6] Cloud Continuous Proactive detec- Static Supervised Short-term
tion estimation

[7] Edge/Hybrid  Continuous Proactive detec- Static Unsupervised | Short-term
tion estimation

(8] Cloud Periodic Intrusion detec- Static Supervised Reactive

tion

AN
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Fig 4.3: Positioning of paper using ML with DT within the

taxonomy
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Digital Twin Literature

Reference System Models for Cybersecurity

Cyber-Physical System

<
Sensors, Processes Environment
Actuators
i ™y
4. Decision and Visualization Analysis "’3 ML arid AralyEEs h Re:l-time StatL:S, logs,
. ata alerts
« Visualization - results ML model \ 4 \ 4
[ ]
+ Decision making, automatic or . : :
) & « Risk and attack estimation Data acquisition & Secure comunication
validated N y
\ J A
Decisions to Simulated Normalized, §’
. aaareaated data =1
aPP|Y scenarios ey _..'g
@ ©
- L " ; | . Digital Twin Model Layer 8 2
1. Cyber-Physical System 2. Digital Twin Model S
Data o Physical Control Network > 3
« Sensors / Actuators > « Data acqum]tmn madel madel madel §
« OT and critical systems « Scenario simulation ! \\ /l @
L y, .
Feature vectors,
Behavior deviations,
. . . . . Detected anomalies,
. £ : ;
Fig 5: Layers of DT architecture applied with z ! ncidents; Hfics
[4Y]
M L §’ Security analysis, Al, IDS, Anomaly detection,
threat simulation, what-if analysis, ...
Suggestions, Response, actions,
alerts control commands
HMI, Visualization Decision & Actuation

(Dashboards, XAl) (Auto, semi-auto)

AN

¢ . .
coeee 11ug0 BOURREAU | cyberCNLir Fig 2: Layers of DT architecture




Emerging Approaches: From
Data-Driven to Model-Aware
Digital Twins
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Most Digital Twins Only Mirror Data — Not System
Without an explicit model o?@m@@e\ﬂe?ernce system, detection stays

reactive.
Referenc / : : :
- Data - Network, hardware, applications, logs, ...
ke SyStem/ A ) " /
a ) AT % N
Analysis - Al - Anomaly detection, attack detection, ...
A ) AN ) - /

Fig 6: Dataflow using ML model

= Hugo BOURREAU | cyberCNIL.fr



Most Digital Twins Only Mirror Data — Not System
Without an explicit model o?@m@@e\ﬂe?ernce system, detection stays

reactive.
Cyber-Physical System [«—
@ ) @ ) v v
Referenc . Dat Data acquisition & Secure
e System ald comunication
& ) < ) .
Digital Twin Model Layer
v k=
4 ™ 4 N E =
. L L Security analysis, Al, IDS,
Ana lyS|S AI %_ Anomaly detection, ...
& ) < ) = l l
Fig 6: Dataflow using ML model M, Decision &

Visualization Actuation
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Most Digital Twins Only Mirror Data — Not System
Without an explicit model o?@m@@e\ﬂe?ernce system, detection stays

reactive.
Cyber-Physical System [«—
a Y a D v v
Referenc Data acquisition & Secure
e svstem ] Data comunication
< y / < 4 |
This limits detection to
Digital TwinfModel Layer >reactive analysis and
prevents forecasting.
a > A E :
. T Security analysis, Al, IDS,
Ana lySIS AI IR Anomaly detection, ...
S v S 4 A=) | .
1| l
Fig 6: Dataflow using ML model HM, Decision &

Visualization Actuation

AN
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Modelizing the Reference System Enables Proactive

Estimation
From observation — to estimation — to anticipation.

'\

C

Fig 7: Known attack pattern

W ~ Attack

51
\ 0 5 10

7" Hugo BOURREAU | cyberCNLfr




Modelizing the Reference System Enables Proactive

Estimation
From observation — to estimation — to anticipation.

.....
.....
- - P0gge0®

5t > 5+
/\—‘ Estimate /\_T- g ~==

” _a0op
-'..

“ g | -wﬁ'?(}v
/\’I/\ Estimate /\—(\

Fig 8: Attack estimation
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From Modelization to Learning

System modeling providR[lI@ @lllhﬁ]i@)ﬁfor safe ML training and

estimation.

Data acquisition & Secure
comunication °

Y

Digital Twin Model Layer

Physical | [ Control | [Network "o
model model model
\ 4 ®

Security analysis, Al, IDS, Anomaly
detection, ...

- Hugo BOURREAU | cyberCNI.fr

Proactive detection with event forecasting

Allow data validation and coherence based
on model on the DT before passing it to
the ML pipeline

Can go even further by passing, settings,
parameters, comportement based
observation to the ML pipeline

Allow coupling with physical parameters to
enhance the detection

26
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Modelizing the Reference System Enables Proactive

Estimation

From observation — to estimation — to anticipation.

Cyber-Physical System

10+

<
Sensors, Processes Environment
Actuators
Real-time Status, logs,
data alerts

Data acquisition & Secure comunication

-

10

15

aggregated data =
Z g
Digital Twin Model Layer o =
_£8
Physical Control Network o
model model model g
\ / o
\ /
Feature vectors,
Behavior deviations,
- Detected anomalies,
2 Incidents Metrics
= Y v 4
g 1
50) Security analysis, Al, IDS, Anomaly detection,
threat simulation, what-if analysis, ...
Suggestions, Response, actions,

alerts
Y

control commands
Y

HMI, Visualization
(Dashboards, XAl)

Decision & Actuation

(Auto, semi-auto)

Hugo BOURREAU | cyberCNI.fr

attack

Fig 9: Attack estimation lifecycle

10+

T — e -

~ Metrics to determine probability of

10

15
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Machine Learning Pipeline in the Digital

Training the model-lgyéé'ynapplying it reliably.

a

Training Phase (Offline)

N

e Data: validated logs, attack simulations,
side-channel measurements

e Goal: learn decision boundaries via
backpropagation

\OOutputs: trained weights - frozen mody

@ Hugo BOURREAU | cyberCNLfr

a

Inference Phase (Online)

N

e Data: live DT data stream

e Goal: detect & estimate attacks using
forward pass only

® No backpropagation, model is read-only

< 4

28



Preventing Model Contamination

Only validated data feeds training, never online events

s ) s N s
Training " Backpropagation " Updated Model
& / " / "
s N s N s
Inference " Forward pass only - '><‘ -*  Backpropagation
& / \ / "

No learning from
live attack data

AN
- Hugo BOURREAU | cyberCNI.fr
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Preventing Model Contamination

Only validated data feeds training, never online events

No online backpropagation, good to avoid
poisoning, but no update over time?

@ Hugo BOURREAU | cyberCNLfr
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Forecasting Mode: Testing Without

Use the trained mo%e?% Eimlljgtgand estimate risks.

4 N 4 N
Add data to ~ Real Events

_current dataset ) dataset

/\—1 e
o 5 . é A Result of

Inference ML
Pipeline

/

)

1 analysis: Attack

Occurring events

- o 5 probabillity, ... p
| ST - i . - a b k : N\ a : N\
e No backpropagation,
/\T .ph P gd Report
| = = ~ noweight update 5 )

Estimations

AN
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Continuous Learning from Validated

Use confirmed |nC|dents % updSate the model offline.

p
Real Event
dataset
L
s
Deploy

/

-
Human
Validation
L
s
Model v2
\_

AN
- Hugo BOURREAU | cyberCNI.fr

~

“— Retrain (Offline)

\

— Training dataset
{ \ /
s N\

/
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Dual-Pipeline Learning: Safe Adaptation and Reliable

Prediction
Use the trained model to simulate and estimate risks.

Empirical data Initial dataset
Validated
event?
No
Yes
Vv _, Vv
Add data to .
Inferen | Trainin
erence current dataset — Dataset P raining <+

[

\V/ | Does model

pass tests?

bes

Replace Inference
model with new

trained model

/ Result for analysis /
' or decision ’

Fig 10: Dual ML Pipeline
@ Hugo BOURREAU | cyberCNLfr

e Training (backpropagation) happens offline
on validated data.

e |nference (forward pass) happens online,
no learning.

e Events can later enrich the training dataset
after validation.

® This ensures robustness, traceabillity, and
resistance to data poisoning.
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Toward Predictive Digital Twins for Cyber-Physical

Security
Integrating Physical Parameters for Attack Detection

Expand observability: Incorporate measurable physical indicators into the Digital Twin.

Enhance estimation: Use these parameters to improve attack precision, anticipate consequences, and
localize anomalies.

Validate prediction: Evaluate how added physical features affect accuracy and detection latency across
datasets and testbeds.

Temperature Human
CPU of a interactions
Load component (Operators) hysical
Identification of physical impact access
Electric an speed
consumptio \ Noise of the
; et System GPU Load

usage

@ Hugo BOURREAU | cyberCNLfr Fig 10: Hardware parameters
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Ensuring Continuous Trust in the ML Pipeline

Automated validation and regression testing for DT-based ML.

Model

e D
Validation

Update

AN
= Hugo BOURREAU | cyberCNLfr

tests
\ /

|

/Like for software

e D
Performanc

s N
Deploymen

e

build, unit test,
. end-to-end, ...

|

- Objective: Pass :
some required

. specifications

_comparison

\ﬁfomlpareﬁ

precision,
recall, latency,

t
\ /

-

for

reproducible

—evaluations.—

>

-

(&

Monitoring

~

/
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Key Challenges: Data and Knowledge

High-quality, multi-domain data remains the main bottleneck.

Aspect Label
| Database Data realism & quality (CPS + side-
channel)
¢» Sources Diversity & representativeness
% Correlation Link physical and logical worlds
/. Precision Benchmarking & validation

Multi-domain, synchronized datasets are the foundation but remain scarce.

- Hugo BOURREAU | cyberCNI.fr
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Key Challenges: Modele usage

Model validation

Computational cost
& Generability

Full-fidelity DT: accurate

but impractical e Validating DT behavior vs. real

system is complex. = How to

modelize the comportment of the
Medium abstraction: reference system? Physical

balanced model equation, correlation, ...

e ML trained on one DT may fall in
another due to parameter shifts.

Simplistic DT: fast
but unrealistic

Model fidelity

= Hugo BOURREAU | cyberCNLfr
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My presentation in a Nutshell

Cyber-Physical System

Sensors,

Proc Environment
Actuators rcessos ronme

Data flow

Real-time Status, logs,

data alerts
A 4 Y

Data acquisition & Secure comunication

2hysical Digital e

aggregated data
A 4

Digital Twin Model Layer

System System

model model model

g T i

1 L

| | Feature vectors,
\ Behavior deviations,
9 o Detected anomalies, 0

Incidents, Metrics
¥ y

Data/oo m m an d Smﬂ::i;”;m;&lDwia?;c;:::;r;:tw'on » Metrics to determine prObablllty of attack

Suggestions, Response, actions,
alerts control commands
v

flow .

HMI, Visualization Decision & Actuation
(Dashboards, XAl) (Auto, semi-auto)

‘ainseauliajunod ‘joue)

Add datato " Real Events
current dataset ) dataset

Integrating Physical Parameters for Attack Detection

Result of
L analysis: Attack Expand observability: Incorporate measurable physical indicators into the Digital Twin.

Inference ML
Pipeline

\

J probability, | Enhance estimation: Use these parameters to improve attack precision, anticipate consequences, and
< )

_4 localize anomalies.

Validate prediction: Evaluate how added physical features affect accuracy and detection latency across
datasets and testbeds.

[

No backpropagation, A

no weight update Report

/i

Estimations

Contact: hugo.bourreau@imt-atlantique.fr
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