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Abstract

The rapid proliferation of IoT technologies has fundamentally reshaped smart infrastructures, spanning from
domestic applications to complex industrial systems. However, this layered and geographically distributed
architecture introduces multifaceted security challenges, particularly in identifying coordinated or stealthy
threats that propagate across different levels of the system. Traditional intrusion detection systems (IDS), typically
deployed in isolation either at the edge or within the cloud, struggle to achieve the necessary global visibility
and often exhibit delayed responsiveness in such dynamic environments. In this paper, we propose a novel
vertical intrusion detection framework tailored to multi-layered IoT networks. Our system enables hierarchical
correlation and fusion of alerts across edge, fog, and cloud layers by combining localized anomaly detection with
a global graph neural network (GNN) that performs structural and temporal reasoning over an alert graph. To
ensure robustness in adversarial settings, we introduce an evolutionary game-theoretic mechanism based on
replicator dynamics, which dynamically adjusts the trust levels of inter-node connections. The nodes evaluate the
reliability of their neighbors based on accuracy and detection consistency, leading to reinforcement of cooperative
behaviors and marginalization of compromised participants. Experimental results show that our architecture
improves detection performance, reduces false positives, and adapts effectively to changing threat landscapes.
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1. Introduction

The proliferation of the Internet of Things (IoT) has profoundly transformed the technological landscape,
allowing traditional infrastructures to evolve into smart, interconnected ecosystems. From smart homes
and telemedicine to industrial automation and intelligent transportation systems, IoT technologies are
now the foundation for critical services across a wide range of sectors. These environments typically
rely on a multi-layered architecture comprising edge devices, fog nodes, and centralized cloud platforms.
This hierarchical structure allows the system to balance trade-offs between latency, computational
resources, and storage capabilities [1].

However, this layered architecture also introduces complex security challenges. The distributed
nature of IoT leads to fragmented local observations, often limited in scope and granularity, which
can hinder accurate and timely threat detection. Particularly concerning are coordinated and stealthy
attacks that exploit the lack of global visibility. An adversary may launch seemingly benign activities at
various layers, such as low-frequency anomalies at the edge or subtle misconfigurations at intermediate
fog nodes, which appear innocuous in isolation but, when viewed holistically, reveal a sophisticated
attack pattern [2]. Moreover, traditional intrusion detection systems (IDS), whether signature-based
or anomaly-based, are typically designed for centralized or flat infrastructures. These systems lack
the capacity to correlate alerts between layers, reason over distributed information, or adapt to the
dynamic trustworthiness of participating entities [3]. Therefore, several recent efforts have sought to
address these challenges by distributing IDS functionality across IoT environments [4, 5, 6]. However,
most such approaches are based on horizontal coordination, where nodes at the same level share
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alerts or models without leveraging the vertical structure inherent to IoT stacks. This often results in
missed opportunities to aggregate semantically related events across the edge-fog-cloud continuum. In
addition, these systems commonly assume that local detection agents are fully trustworthy, ignoring the
possibility of compromised, malfunctioning, or misconfigured nodes that can distort the global analysis.
In adversarial settings, such assumptions can make the IDS vulnerable to poisoning or misinformation,
degrading both detection accuracy and system robustness.

To overcome these limitations, we propose a new Vertical Intrusion Detection System (V-IDS)
that is natively designed for the layered nature of IoT infrastructures. Our contributions are threefold:

« We introduce a graph neural network (GNN)-based fusion architecture that enables the aggregation
and correlation of alerts across the vertical layers of the IoT stack. This design supports both
structural and temporal reasoning, allowing the system to detect distributed and evolving attack
patterns that would remain hidden in layer-isolated analyzes.

« We incorporate an evolutionary game-theoretic mechanism based on replicator dynamics to con-
tinuously adjust influence (edge weights) of participating nodes within the GNN. This mechanism
evaluates the historical performance and consistency of each node, reinforcing contributions
from reliable agents while gradually reducing the impact of untrustworthy or compromised
participants.

« We demonstrate that the proposed system significantly improves detection performance and
resilience through extensive simulations. Our results highlight the advantages of combining
hierarchical alert fusion with trust-based adaptive reasoning under adversarial conditions.

By integrating multi-layered visibility with adaptive trust modeling, V-IDS offers a scalable and robust
solution for intrusion detection in complex and dynamic IoT environments. Addresses key limitations
of existing systems by enabling global threat inference from fragmented and potentially unreliable local
data, a crucial step toward securing the next generation of smart infrastructures.

2. Related work

2.1. Intrusion detection systems for loT

Intrusion detection systems are essential for monitoring and detecting malicious activity in networked
environments [7]. Traditional IDS approaches can be broadly classified as signature-based or anomaly-
based. Although signature-based systems are effective against known threats, they struggle with
zero-day attacks. Anomaly-based systems, on the other hand, can detect novel patterns but often suffer
from high false positive rates.

In the context of IoT, these traditional IDS approaches face significant limitations. IoT environments
are characterized by high device heterogeneity, resource constraints, and decentralized architectures.
Several works have proposed lightweight or distributed IDS for edge or fog computing layers [8, 9].
However, these systems typically operate in isolation or rely on flat (horizontal) peer coordination,
lacking mechanisms to reason across hierarchical layers. As a result, they are ineffective at detecting
multi-stage or stealthy attacks that span across edge, fog, and cloud layers.

2.2. Graph-based IDS approaches

Graph-based learning has emerged as a powerful paradigm in intrusion detection, particularly with
the adoption of Graph Neural Networks (GNNs) due to their ability to model structured data, such
as communication graphs, process dependency graphs, and interaction networks. GNNs enable the
propagation and aggregation of information across connected entities, making them well-suited to
capture the relational patterns and spatial correlations inherent in networked systems.

In the context of IDS, GNNs have been applied to various tasks: GCN-IDS [10] leverages graph
convolutional networks to detect intrusions by modeling communication patterns between hosts;
DeepTrack [11] models lateral movement attacks through dynamic graphs of host behaviors; and



GADIN [12] captures device-to-device interactions for anomaly detection in IoT networks. Other
studies have proposed temporal GNNs to incorporate time-evolving features of attack propagation [13],
and heterogeneous graph structures to differentiate between types of nodes and edges [14].

Despite their effectiveness, most of the existing GNN-based IDS approaches suffer from structural
limitations. They often assume a static, centralized, or flat topology, which does not reflect the layered
and distributed nature of modern IoT environments. Node interactions are typically assigned uniform or
fixed edge weights, without taking into account dynamic trust levels or reliability, limiting the system’s
ability to adapt to adversarial conditions.

Moreover, few existing approaches explicitly address the vertical nature of IoT architectures,
where alert signals and contextual information flow from edge devices to fog nodes and cloud services.
Without modeling this hierarchical structure and the corresponding dependencies between layers, such
systems lack the ability to perform holistic threat reasoning and struggle to maintain robustness in
the face of distributed, stealthy, or coordinated attacks [15].

2.3. Trust and weighting mechanisms in distributed detection

Trust-aware computing and dynamic weighting have been explored in distributed systems to mitigate
the influence of unreliable nodes. Reputation-based schemes and credibility scores have been used in
wireless sensor networks and federated learning [16]. Some works have also applied game-theoretic
models to model cooperation among agents [17, 18], aiming to incentivize truthful reporting or penalize
malicious behavior.

However, these mechanisms are often implemented outside of the learning process (e.g., pre-filtering
nodes), or rely on global reputation tracking, which is impractical for dynamic, large-scale IoT set-
tings. Very few works incorporate local, adaptive trust mechanisms directly into the message-passing
operations of a GNN for intrusion detection.

The existing literature on intrusion detection in IoT environments highlights several important
limitations. First, most IDS solutions do not take advantage of the inherent vertical structure of IoT
architectures. Rather than leveraging the hierarchical organization of edge, fog, and cloud layers for
multi-level reasoning, they often operate in a flat or isolated manner, limiting their capacity to detect
complex, multi-stage threats. Second, graph-based approaches, including those based on Graph Neural
Networks, generally rely on fixed edge weights and lack mechanisms to adapt to dynamic variations in
node behavior or reliability. This static configuration renders them vulnerable in adversarial or noisy
environments. Finally, while trust and reputation mechanisms have been studied in distributed systems,
they are typically implemented externally to the learning model and rarely integrated into the core
inference process of the IDS itself. In particular, to our knowledge, no existing approach incorporates
localized evolutionary trust dynamics directly within the GNN message-passing framework.

In this work, we address these limitations by introducing a novel vertical IDS framework tailored to
the hierarchical structure of IoT environments. Our approach performs multi-layered alert fusion via a
graph neural network architecture that explicitly encodes the vertical communication pathways from
edge to cloud. Unlike prior work that relies on static topologies and uniform weighting, we incorporate
a dynamic, trust-aware weighting mechanism based on local evolutionary dynamics inspired by game
theory. This mechanism enables each node to adjust the influence of its neighbors based on observed
behavior over time, enhancing resilience to malicious or unreliable participants. As a result, our system
can correlate fragmented and partial observations across different layers, suppress the propagation of
misleading information, and maintain robustness against distributed and adaptive adversaries.

3. Background

3.1. loT Stack: Edge, Fog, and Cloud

We consider a three-tier IoT architecture composed of layers edge, fog, and cloud. Edge devices resides
closest to the physical environment: sensors, actuators, and user endpoints that collect raw telemetry
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Figure 1: Cloud-Fog-Edge loT stack with tier-wise aggregation and bidirectional information flow. Solid arrows
indicate uplink telemetry and alerts (Edge — Fog — Cloud); downward arrows depict feedback such as policies
or model updates.

and perform low-latency processing under constrained resources. Fog nodes, positioned between the
edge and the cloud, serve as domain-level aggregators; they consolidate data from multiple edge devices,
apply pre-processing and filtering, and enforce localized policies to reduce both latency and upstream
traffic. The cloud layer offers elastic compute and storage across domains, maintains a long-term
context, and executes global-scale analytics and learning models.

This vertical architecture is depicted in Figure 1, which highlights the bidirectional flow of information:
uplink telemetry and alerts (solid arrows) propagate from edge to fog to cloud, while feedback, updated
models and enforcement policies flow downstream.

Within this hierarchical structure, observations are inherently fragmented: edge nodes detect fine-
grained but localized patterns; fog nodes uncover domain-level correlations; the cloud synthesizes
cross-domain signals into global insights. Our IDS design takes advantage of this vertical segmentation
in two synergistic ways. First, each tier performs an adaptive trust assessment by monitoring the
consistency and quality of the alerts received from the tier below, adjusting its attention to upstream
sources via an evolutionary weighting mechanism. Second, the cloud fuses multi-tier summaries using
graph-based message passing within a GNN, enabling global threat detection through the integration
of multi-hop, multi-layer dependencies otherwise undetectable by isolated nodes.

3.2. Evolutionary Game Theory: Fitness, Replicator, and ESS

Evolutionary Game Theory (EGT) emerged in the 1970s to explain adaptation in large populations [19].
Rather than perfectly rational players choosing the best responses once, EGT studies how the frequency
of strategies changes over time under selection. Two cornerstone ideas are evolutionarily stable strategy
(ESS), which formalizes resistance to invasion by rare mutants, and replicator dynamic, which links the
growth rate of a strategy to its relative performance in the current population.

Consider a finite set of pure strategies S = {1,...,m}. A population state is a vector z =



(z1,...,2m) in the probability simplex A™~1 = {z € R7 : >", z; = 1}, where x; is the frequency of
the strategy . N

In a symmetric two-player game with payoff matrix A € R™*"", the (expected) fitness of strategy ¢
against population x is

mi(x) = (Ax);, 7(z) = x' Az (mean fitness).

More generally, in a population game, one specifies a continuous fitness map 7 : A™~! — R™,
2> (712 T ().

Replicator dynamic [20]. The continuous-time replicator equation evolves the state z(t) according
to payoff differences:
T, = xi(m(a:)—fr(x)), 1=1,...,m.

It preserves the simplex (z(t) € A™~! for all t) and leaves the support of z invariant. A widely used
multiplicative update in discrete time is

t
(t+1) _ 2 mi(2)

€T =
Sy m(20)

(2
which is the discrete analogue of the replicator flow.

9

Rest points and Nash equilibria [21]. A state 2™ is a (symmetric) Nash equilibrium if every strategy
in its support achieves maximum payoff: for all ¢ with 27 > 0 and all j, m;(z*) > 7;(2*). All Nash
equilibria are stationary for the replicator dynamic (& = 0), although not all stationary points are Nash.

Evolutionarily Stable Strategy (ESS) [21]. A state z* € A™ ! is an ESS if it is a Nash equilibrium
and is resistant to invasion: there exists g > 0 such that for any y # 2* and all 0 < € < ¢,

m(z*, (1 —e)a* +ey) > n(y, (1 —e)z* +ey),

i.e., the incumbent earns strictly higher payoff than any nearby mutant when the population is mostly
at . In symmetric matrix games, the asymptotically stable rest point of the replicator dynamic;
conversely, asymptotic stability of the replicator implies a refinement of Nash that excludes neutrally
stable points (non-ESS).

Under replicator flow, the mean fitness 7(z) is a Lyapunov function for potential games, and the
dynamics is gradient-like with respect to the Shahshahani metric [21]. Thus, trajectories generically
converge to invariant sets composed of Nash equilibria; ESSs are isolated attractors within these sets.

3.3. Graph Neural Networks

Let G = (V, &) be a directed graph, where V is the set of nodes, with |V| = n,and € C V x V is the set
of directed edges (that is, ordered pairs (j, ¢) with an edge from j to ¢). Each node i € V is associated
with an input vector of characteristics z; € R% and a representation hz([) € R% in the layer ¢ of the

)

network, initialized as hl(.o = z;. We denote the in-neighborhood of node 7 by

N(i)={jeV|(iec},

i.e, the set of nodes with edges directed toward i.

A Graph Neural Network iteratively updates node representations through message passing over G.
At each layer /, a node i receives messages from its neighbors N (7), aggregates them, and updates its
state:

WD =60 (W0 D v (100 e |
FEN (@)



where (¥ is a message function, $() an update function, ei; optional edge features, and © a
permutation-invariant aggregator (for example, sum or mean) [22].

A common instance is the Graph Convolutional Network (GCN), which uses linear messages and
symmetric normalization.

HED = o (D‘WAD‘”Q H(@W(@) :

where A = A+ 1 is the adjacency matrix with self-loops, D its degree matrix, H®) the characteristics
of the nodes in the layer ¢, W) a learnable weight matrix and o an activation function (for example,
ReLU). This formulation ensures that each node combines its own features and those of its neighbors in
a normalized way.

Weighted aggregation. In settings where edges carry reliability scores w;; € [0, 1], message passing
can be adapted to favor trustworthy sources. We define a weighted adjacency A(*) with entries

Ag;u) = wj; for the edge j — 7, and apply the same normalization:

e _ <D71/2A(w)bfl/2 H(z)W(E)) 7

(w) )

where A" = A®) 4 Tand D = diag(A(w 1).
Alternatively, we can row-normalize weights per target node:

hz(f+1) =0 Wohge) + Z {Uij Whge) ,
JEN(3)

which makes the propagation scale invariant and interpretable as a reliability-weighted attention.

These weights w;; can be learned (as in attention mechanisms) or externally provided, e.g., based on
past performance, trust levels, or cross-layer confirmation. In our case, they are computed independently
and used to modulate the information flow across the graph.

4. Proposed architecture

Although the concept of a multilayered IDS architecture has been outlined, the present study deliberately
focuses on a two-layer Fog-Cloud model, which is sufficient to validate the concepts introduced while
maintaining analytical tractability and facilitating simulation. Extending this framework to a three-
layer Edge—-Fog—Cloud architecture is feasible, for instance, by adopting a GNN-based approach in
which nodes are organized into clusters forming subgraphs. In this structure, intra-cluster edges
capture interactions among edge nodes, while inter-cluster edges represent interactions at the Fog
level. However, such an extension would introduce additional complexity in the IDS design, which
requires coordinated detection between edge, fog, and cloud nodes, along with increased computational
overhead. This avenue will be explored in future work.

4.1. Overview of the Vertical IDS Framework

We consider a hierarchical IoT architecture composed of three layers: edge, fog, and cloud. Edge devices
generate raw data, but lack the capacity for local intrusion analysis. Each fog node F; supervises a
subset &; of edge devices and runs a lightweight intrusion detection module. Detected anomalies are
forwarded to the cloud layer for further analysis.

At the cloud level, alerts are jointly analyzed using a GNN, where nodes represent fog entities, and
edges encode their proximity. This enables the detection of coordinated or distributed intrusions by
leveraging spatiotemporal dependencies.



To enhance robustness against unreliable or compromised fog nodes, we propose a vertical intrusion
detection system that integrates two-level detection and trust feedback. Local fog detection is com-
plemented by global cloud analysis, where trust scores are dynamically adjusted to reinforce reliable
sources and downweight inconsistent ones.

The general architecture of our vertical intrusion detection system is illustrated in Figure 2. It shows
the two-layer detection flow from edge to cloud, as well as the integration of spatio-temporal analysis
and trust-based feedback.

> . . - - -
/ Sensors, cameras, or smartloT / Local IDSs . S ommmmmmm e .

Devices generating events, ...

=l

N
-
-

Local anomaly detection

. Evolutionary Game
and alert generation

Module

Collected traffic _

Aggregated alerts

I i
1 1
1 1
1 i
1 1
1 i
i 1
and feedback 1 !
1
1 1
1 i
1 1
1 1
i 1
1 1
1 i
i 1
\ 1
N,

Evaluates feedback
trustworthiness
via evolutionary game
/

. \ b P S e Sttt
N g 1 Trust-based
Edge Devices Fog Nodes payoff computation
(Sensors / Endpoints) (Domain Aggregators) 5 .
/
Graph Module \

/ {Intrusion
L ) , Benign}

Trust scores /
strategies update

Constructs global
attack correlations
\ 3 ;
\ from local observations L !
.

Cloud Data Center

Figure 2: Vertical Intrusion Detection Architecture across Edge, Fog, and Cloud layers. Raw data generated
at the edge is processed locally by fog-level IDS modules. Alerts are sent to the cloud for spatio-temporal
graph-based analysis and trust-aware aggregation.

4.2. Local Fog Detection and Metric Reporting

In the fog layer, each node Fj is responsible for monitoring a subset of edge devices &; and detecting
signs of potential intrusions. Due to resource constraints, only lightweight analysis is performed locally.
Rather than transmitting raw alerts to the cloud, each fog node computes a set of structured metrics
designed to summarize the security context of its monitored region. These metrics form the basis for
later global analysis and trust computation.

Let ¢ denote the current detection time window. Each fog node Fj is responsible for monitoring a set
of edge devices &;. During window ¢, the node collects a set of raw detection events:

D;i(t) = {di1,di2, ..., dim},

where m is the number of events detected by the fog node F; during the time window ¢, and each
event d;; originates from some device in &;. For each event d;;, the fog node extracts a local feature
vector x;; € R, where k denotes the number of detection-relevant attributes. These features typically
include metrics such as anomaly score, packet rate variance, source IP entropy, protocol distribution,
and flow duration.

To summarize its local detection activity, each fog node computes the following aggregated metrics
on D;(t):



« Anomaly intensity — average anomaly score across events:
1 m
Ai(t) = — E sij,  denotes the anomaly score of event d;;, extracted as a component
m
7j=1

of the feature vector x;;.

« Event diversity — Shannon entropy over the distribution of event types:

L

Hi(t)=— Z prlogp;, where L is the number of distinct event types observed in D;(t),
=1

and p; is the proportion of events of type [. Each event d;; is labeled with a type (e.g. port scan,
login attempt), and the proportions {pl}l[’: , are estimated by counting the frequency of each type
among the m events in D;(t).

« Temporal dispersion — standard deviation of interarrival times:
A;(t) = std ({ti(jJrl) — tij ;":—11) ,  where t;; is the timestamp of event d;;,

and std(-) denote the standard deviation. Events {d;;} are assumed to be sorted in increasing
order of their timestamps.

« Detection rate — number of events per device per time unit:

m

Sl

R;i(t)

where m is the number of events in D;(t), |&;| is the number of devices ,

monitored by F; and 7 is the duration (in seconds) of the detection window .

The resulting fog-level summary vector is defined as:
@i(t) = [Ai(t), Hi(t), Ai(t), Ri(t)] € RY,

where each component, respectively, represents the intensity of the anomaly, the diversity of events,
the temporal dispersion, and the detection rate calculated by node F; during the window t.

This compact representation is transmitted to the cloud, where it serves as the input for global
verification mechanisms and trust-inference algorithms.

By analyzing the set of vectors ¢, (t) reported by all fog nodes, the cloud layer can:

» Detect coordinated or distributed attack patterns,
« Compare detection behavior across fog regions,
« Assess the reliability and consistency of local detections.

These insights are used to compute a replicator coefficient for each fog node, which quantifies its
behavioral alignment with the global detection context. This coefficient serves as a key component of
the trust-aware fusion mechanism described in the next section.

5. Evolutionary Game for Trust Reinforcement

To dynamically adjust the trust assigned to each fog node, we model their interactions and behavior
consistency through an evolutionary game. The game is played at the cloud level among a population
of fog nodes F = {F1, Fy, ..., Fi}, where each node acts as a player and N denotes the total number
of fog nodes.



5.1. Population and Strategies

Each fog node is associated with a strategy that reflects the consistency of its metrics reported ¢, ()
compared to those of its neighbors. We consider two main types of strategies:

+ Honest (H): the node consistently reports indicators that are consistent with both its neighboring
nodes and its own past behavior.
« Unreliable (U): the node provides metrics that are inconsistent, noisy, or potentially malicious.

At each time step ¢, the distribution of strategies in the population is represented by the state variables
x(t) and xy(t), denoting the proportion of nodes following strategies H and U, respectively. These
proportions satisfy the normalization condition: x g (t) + () = 1.

5.2. Utility Computation

The utility of a fog node playing strategy s € { H, U} is calculated based on the consistency between
its reported indicators ¢;(¢) and those of its neighbors in the GNN graph. These indicators reflect the
node’s local metrics at time ¢ (for example, anomaly scores, event frequencies).

Formally, for a node Fj, the utility function u;(s) is defined as:

ui(s) = ) wij - sim(ei(t), ¢, (1))

JEN(9)

where A/ (i) denotes the set of neighbors of node Fj, w;; € [0,1] is the trust weight assigned to the
edge between F; and F};, and sim is a similarity function (e.g., cosine similarity or Pearson correlation)
that quantifies the alignment of indicators between the two nodes.

This utility function captures how well the behavior of a node aligns with its local environment. It
serves as the basis for the evolutionary game dynamics introduced in the next section, where the nodes
adapt their strategies over time according to their relative utilities.

5.3. Replicator Dynamics

The proportion of each strategy in the population evolves according to replicator dynamics, which
models the natural selection process, where strategies with higher-than-average utility become more
prevalent over time.

Formally, the evolution of the population share x4(t) of the strategy s € { H, U} is given by:

s(t) = ws(t) (us(t) — ult))

where ug(t) is the average utility of the nodes that play the strategy s, and @(t) is the mean utility
across the entire population:

ﬂ(t) = LUH(t) . uH(t) + xU(t) . uU(t)

In this framework, strategies with utility above the population average grow in proportion, while
others decline. This evolution provides a global view of how trustworthy behavior propagates or
recedes.

In parallel, each node F; is also assigned a replicator coefficient 7;(¢), which reflects its alignment
with the prevailing trustworthy behavior. It can be derived from the utility deviation of the node relative
to the population, for example:

7i(t) = ui(s) — u(t)

This coefficient can be used to adjust trust levels, re-weight connections, or trigger mitigation mecha-
nisms in the intrusion detection framework.



5.4. Integration into the Global GNN-Based Detection Model

The final stage consists of building a GNN at the cloud level to detect global intrusion by aggregating
the indicators ¢, (t) received from all fog nodes. The graph G = (V, ) is defined as follows:

« V={F1,...,Fy} is the set of fog nodes.
« £ CV x V contains edges based on communication links or similarity relations.
« Each node F; is associated with a characteristic vector ¢;(t).

« Each edge (7, j) € £ is assigned a weight w;; capturing trust or similarity between the two nodes.

To enhance the robustness of the model against unreliable input, the replicator coefficient r;(¢) € [0, 1]
obtained from the evolutionary game is incorporated into the graph structure in two ways:

1. Node Weighting: each feature vector ¢,(t) is scaled by its replicator coefficient:
;ﬁz(t) =ri(t) - #(1)

This ensures that nodes with inconsistent or adversarial behavior have less influence in the
feature aggregation process.
2. Edge Reweighting: the weights of the edges are also modulated by the product of the replicator
coeflicients of their endpoints:
Wij = ri(t) - 75(t) - wi
This penalizes edges involving less trustworthy nodes, reducing their contribution in the message-
passing phase of the GNN.

Final GNN Layer: the GNN is then trained or applied using these reweighted nodes and edges. A
generic message-passing layer takes the form:

A = o Z Wy .W(l)[py)
JEN(3)

where ¢ is a non-linear activation function, W) the learnable weight matrix at layer [, and q}b? the
transformed representation of node j at layer /.

This trust-aware GNN architecture ensures that nodes with poor historical behavior are dynamically
down-weighted, while coordinated indicators among trusted fog nodes dominate global inference. As a
result, the intrusion detection system remains robust to data drift, observational noise, and adversarial
perturbations originating at edge or fog levels.



Algorithm 1 Vertical Intrusion Detection with Evolutionary Trust and GNN Inference

Input :Raw data streams from edge devices &; supervised by each fog node F;
Output:Global intrusion alerts with dynamic fog trust weighting
foreach fog node F; do
Collect and locally process data from supervised edge devices &;;
Compute local anomaly indicators ¢;(t) (e.g., anomaly score, detection entropy, temporal
divergence;
Transmit ¢;(t) to the cloud layer;
foreach fog node F; do
At cloud level, evaluate ¢;(t) across fog nodes;
Compute utility u; based on:
 Consistency with neighboring nodes
» Agreement with global detection patterns

Update evolutionary trust weight p;(t) using replicator dynamics:
pi(t+1) = pi(t) + 1+ pi(t) - (wi — )

where 7 is the adaptation rate and  is the average utility across all fog nodes;

Construct GNN G = (V, £) where V are fog nodes and € encodes proximity or functional relationships;
Integrate p;(t) as:

« Node weights or message-passing coefficients in GNN layers

Run global inference via GNN to identify distributed or coordinated intrusions;
return Final alerts with reliability-weighted confidence scores

6. Experimental Evaluation

6.1. Dataset and Preprocessing

To assess the effectiveness of our hierarchical and trust-aware intrusion detection framework in an IoT
environment, we rely on the UNSW-NB15 dataset. This dataset, developed by the Australian Center
for Cyber Security (ACCS), was generated using the IXIA PerfectStorm tool to simulate modern and
diverse network traffic, including both normal behavior and a wide range of attacks.

UNSW-NB15 contains a total of 2,540,044 labeled network flow records, each described by 49 features,
including basic connection metadata (for example, duration, protocol, port numbers), content-based
metrics (e.g., byte and packet counts), and time-related statistics. The attacks are grouped into the
following nine categories: Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode,
and Worms.

Given the constraints of IoT systems, low computational resources, real-time requirements, and
partial observability, we selected a representative subset of the dataset, ensuring class balance between
benign and malicious traffic. Of the 49 available features, we retained those most suitable for real-time,
lightweight anomaly detection at the edge, including the following:

« dur - connection duration

« spkts, dpkts - packet counts in each direction
« sbytes, dbytes - byte volume in each direction
» rate — packet transmission rate

« sttl, dttl - time-to-live indicators

e swin, dwin — TCP window sizes



« ct_state_ttl - state transition patterns

These features are used to compute local anomaly scores using lightweight statistical estimators (e.g.,
z-score normalization, adaptive thresholding), suitable for deployment on constrained IoT edge devices.

Vertical Layer Simulation. To reflect the architecture of a realistic IoT deployment, we model a
three-tier system composed of Edge, Fog, and Cloud layers:

« Edge Layer: a set of low-power IoT nodes (e.g. sensors, smart cameras) collect streaming data in
real time and transmit it to their supervising fog node. These edge devices do not perform any
local intrusion detection due to resource constraints and lack of global context.

« Fog Layer: intermediate fog nodes act as local aggregators, each supervising a group of 10-20
edge nodes. They receive raw data, perform local anomaly detection (for example, temporal
divergence based on entropy) and transmit anomaly indicators ¢;() to the cloud.

+ Cloud Layer: the global coordination layer is implemented using a spatio-temporal Graph
Neural Network (GNN), where each fog node is a vertex. The edges between the fog nodes are
dynamically weighted using a replicator equation from evolutionary game theory, based on the
consistency and precision of the reports received.

To simulate adversarial environments, we deliberately degrade the trustworthiness of a subset of
fog nodes by injecting uncertainty and noise into their anomaly indicators. Specifically, we select up
to 20% fog nodes to behave adversarially, either through random perturbations, delayed reporting,
or inconsistent signaling—mimicking scenarios such as node compromise, software malfunction, or
targeted misinformation. The GNN-based model refines threat detection by leveraging spatio-temporal
correlations in the graph topology and dynamically adjusting trust weights through evolutionary
feedback, thus mitigating the influence of unreliable nodes over time.

This layered simulation allows us to evaluate the localized detection performance at the fog
level, where partial anomaly fusion is performed, as well as the global correlation capabilities at
the cloud level using GNN inference. In particular, we compare a standard hierarchical IDS with our
proposed evolutionary trust-based IDS (eIDS) in terms of detection accuracy, false positive rate, and
robustness under noisy or adversarial conditions.

6.2. Baselines and Evaluation Metrics

To thoroughly assess the effectiveness of our proposed evolutionary trust-based IDS (eIDS), we compare
it against several baseline architectures, each representing a different class of intrusion detection
strategies commonly adopted in IoT environments:

(1) Flat Centralized IDS (Central-IDS). Traditional architecture where all edge devices forward
raw or preprocessed flow data directly to a centralized cloud-based detection system. This IDS uses a
conventional supervised model trained on global features, without hierarchy or distributed intelligence.

(2) Hierarchical IDS without Trust Mechanism (H-IDS). A three-tier architecture similar to ours
(Edge-Fog—Cloud), where fog nodes collect flow data from edge devices and perform local anomaly
detection independently. The cloud layer performs global correlation based on static topological
connections between the fog nodes. This baseline does not incorporate any trust-aware fusion or
adaptive graph structure; the cloud layer operates with fixed edge weights.

(3) Hierarchical IDS with Static Trust Weights (S-eIDS). An enhanced hierarchical IDS where
fog-level detection is enhanced with pre-assigned trust values between fog nodes. These static trust
weights are based on historical metrics such as uptime or past detection reliability. However, the trust
graph remains fixed over time, without any dynamic adaptation or feedback mechanism.

(4) Proposed Model - Evolutionary Trust-based IDS (eIDS). Our full system, which includes: (i)
unsupervised anomaly detection and signal fusion at the fog layer, (ii) global spatio-temporal correlation



through a GNN at the cloud level, and (iii) dynamic adjustment of trust weights between fog nodes
using evolutionary replicator dynamics, allowing the system to penalize unreliable nodes and reinforce
trustworthy ones over time.

Evaluation Metrics. We evaluate all models using the following performance indicators:

« Area Under the ROC Curve (AUC): measures the general discriminative ability of the model
across thresholds.

« True Positive Rate (TPR): proportion of correctly detected malicious flows among all malicious
ones.

- False Positive Rate (FPR): proportion of benign flows incorrectly identified as malicious.

« Trust Stability Index (TSI): captures the consistency of the evolution of the trust coefficient
over training epochs.

Each experiment is repeated over 10 randomized train-test splits to ensure statistical significance.
For all hierarchical models, we maintain the same number of edge and fog nodes and inject synthetic
faults into a subset of fog nodes (up to 20%) to simulate adversarial behavior.

Implementation Details. All models are implemented in Python using PyTorch and PyTorch-
Geometric for the GNN modules. The replicator dynamics are implemented as a feedback loop between
epochs, updating the edge weights in the graph adjacency matrix. Training is carried out for 50 epochs
using the Adam optimizer, with early stopping based on AUC validation.

6.3. Results and Analysis

We report the detection performance of all models on the UNSW-NB15 dataset in terms of AUC, TPR,
and FPR.

Figure 3 shows the ROC curves averaged over more than 10 runs. Our proposed model, Evolutionary
Trust-based IDS (eIDS), consistently outperforms all baselines, achieving an average AUC of 0.85, with
a higher true positive rate and a lower false positive rate across all thresholds. In contrast, the Flat
Central-IDS model performs significantly worse, with an AUC of only 0.67, highlighting the limitations
of centralized detection in dynamic and distributed IoT environments. The Hierarchical IDS without
trust and the Static Trust-based IDS obtain intermediate results, with AUCs of 0.73 and 0.78, respectively.
These results demonstrate the advantage of integrating an adaptive trust mechanism into the detection
process, allowing the system to better handle adversarial or noisy conditions.

Figure 4 compares false positive rates (FPR) in different IDS architectures using a boxplot over
multiple runs. The Flat Central-IDS shows the highest FPR, illustrating the limitations of centralized
decision-making in dynamic environments. Both Hierarchical IDS (no trust) and Static Trust-based
IDS demonstrate moderate variability in FPR, reflecting their limited adaptability when faced with
compromised fog nodes. In contrast, the evolution trust-based IDS (eIDS) achieves the lowest and most
stable FPR, thanks to its ability to dynamically reduce the influence of unreliable nodes through evolving
trust scores in the GNN-based correlation mechanism.

Figures 5 and 6 jointly illustrate the evolution of replicator dynamics and the resulting trust coefficients
for five Fog nodes over time. A strong positive correlation is observed between replicator values and
trust levels, as expected from the softmax-based trust calculation mechanism.

In Figure 5, Fog Nodes 1 and 2 maintain high and stable replicator values throughout the 50 time steps,
indicating consistent cooperative behavior. In contrast, Nodes 3, 4, and 5 exhibit a clear and progressive
decline in their replicator values, with Node 5 eventually dropping to zero. This decline reflects a
sustained deviation from the expected cooperative behavior, which can be attributed to malicious
actions or persistent inefficiency.

Figure 6 shows how the trust coefficients evolve accordingly. Nodes 1 and 2 gain progressively higher
trust, with their coefficients increasing from approximately 0.20 to above 0.30. However, the trust values
for Nodes 3, 4, and 5 gradually decrease below the initial baseline, approaching 0.10 for Node 5. This
reflects the direct impact of their decreasing replicator values on the trust computation process.
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Figure 3: ROC curves for the different IDS architectures evaluated on UNSW-NB15.
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Figure 4: Comparison of false positive rates across IDS models. The elDS architecture achieves the lowest and
most stable FPR by dynamically mitigating the influence of compromised fog nodes.

Overall, these results validate the effectiveness of using replicator dynamics as an input to the trust
model: cooperative nodes are rewarded with increasing trust, while uncooperative or malicious behavior
is penalized with decreasing trust, enabling adaptive and reliable trust management in distributed Fog

environments.

7. Conclusion and perspectives

This paper introduced a vertical intrusion detection system (V-IDS) for hierarchical IoT architectures.
Combining GNN-based alert fusion with an evolutionary game-theoretic trust mechanism, the model
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Figure 5: Evolution of the replicator dynamics of five Fog nodes over time. Nodes 1 and 2 maintain a high
replicator value, while nodes 3, 4, and 5 experience a steady decline, suggesting increasingly uncooperative or
malicious behavior.
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Figure 6: Trust coefficient evolution using softmax normalization. Nodes 1 and 2 gain more trust over time,
while nodes 3, 4, and 5 lose trust due to their declining replicator values.

enables structural and temporal reasoning over a two-layer Fog—Cloud setup and improves resilience
by dynamically adjusting node influence based on trust. The system mitigates the impact of unreliable
or malicious nodes by embedding trust evolution into the GNN via adaptive edge weights, guided by
local performance and neighborhood feedback. To ensure tractability, we focus on a two-layer detection
model. Extending the architecture to include a third Edge layer is feasible but adds computational
complexity, and will be addressed in future work.

The next steps include formal analysis of evolutionary dynamics, dense graph scalability studies,
integration with federated learning for privacy, and broader empirical evaluation of real-world data



sets.

This research contributes to adaptive, robust, and intelligent IDSs for secure IoT infrastructures.
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